1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
use crate::evaluator::*;
use crate::straight_line_fit::fit_straight_line;
macro_const! {
const DOC: &str = r#"
The slope, its error and noise level of the light curve in the linear fit
Least squares fit of the linear stochastic model with constant Gaussian noise $\Sigma$ assuming
observation errors to be zero:
$$
m_i = c + \mathrm{slope} t_i + \Sigma \varepsilon_i,
$$
where $c$ is a constant,
$\{\varepsilon_i\}$ are standard distributed random variables. $\mathrm{slope}$,
$\sigma_\mathrm{slope}$ and $\Sigma$ are returned.
- Depends on: **time**, **magnitude**
- Minimum number of observations: **3**
- Number of features: **3**
"#;
}
#[doc = DOC!()]
#[derive(Clone, Default, Debug, Serialize, Deserialize, JsonSchema)]
pub struct LinearTrend {}
impl LinearTrend {
pub fn new() -> Self {
Self {}
}
pub fn doc() -> &'static str {
DOC
}
}
lazy_info!(
LINEAR_TREND_INFO,
LinearTrend,
size: 3,
min_ts_length: 3,
t_required: true,
m_required: true,
w_required: false,
sorting_required: true,
);
impl FeatureNamesDescriptionsTrait for LinearTrend {
fn get_names(&self) -> Vec<&str> {
vec!["linear_trend", "linear_trend_sigma", "linear_trend_noise"]
}
fn get_descriptions(&self) -> Vec<&str> {
vec![
"linear trend without respect to observation errors",
"error of slope of linear fit without respect to observation errors",
"standard deviation of noise for linear fit without respect to observation errors",
]
}
}
impl<T> FeatureEvaluator<T> for LinearTrend
where
T: Float,
{
fn eval(&self, ts: &mut TimeSeries<T>) -> Result<Vec<T>, EvaluatorError> {
self.check_ts_length(ts)?;
let result = fit_straight_line(ts, false);
Ok(vec![
result.slope,
T::sqrt(result.slope_sigma2),
T::sqrt(result.reduced_chi2),
])
}
}
#[cfg(test)]
#[allow(clippy::unreadable_literal)]
#[allow(clippy::excessive_precision)]
mod tests {
use super::*;
use crate::tests::*;
check_feature!(LinearTrend);
feature_test!(
linear_trend,
[LinearTrend::new()],
[1.38198758, 0.24532195657979344, 2.54157969],
[1.0_f32, 3.0, 5.0, 7.0, 11.0, 13.0],
[1.0_f32, 2.0, 3.0, 8.0, 10.0, 19.0],
);
fn linear_trend_finite(path: &str) {
let eval = LinearTrend::default();
let (t, m, _) = light_curve_feature_test_util::issue_light_curve_mag::<f32, _>(path, None);
let mut ts = TimeSeries::new_without_weight(t, m);
let actual = eval.eval(&mut ts).unwrap();
assert!(actual.iter().all(|x| x.is_finite()));
}
#[test]
fn linear_trend_finite_1() {
linear_trend_finite("light-curve-3/1.csv");
}
#[test]
fn linear_trend_finite_2() {
linear_trend_finite("light-curve-3/2.csv");
}
#[test]
fn linear_trend_finite_3() {
linear_trend_finite("light-curve-3/640202200001881.csv");
}
#[test]
fn linear_trend_finite_4() {
linear_trend_finite("light-curve-3/742201400001054.csv");
}
#[test]
fn linear_trend_finite_5() {
linear_trend_finite("light-curve-3/742201400001066.csv");
}
}