1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
use crate::evaluator::*; macro_const! { const DOC: &'static str = r#" Maximum deviation of magnitude from its median $$ \mathrm{percent~amplitude} \equiv \max_i\left|m_i - \mathrm{Median}(m)\right| = \max(\max(m) - \mathrm{Median}(m), \mathrm{Median}(m) - \min(m)). $$ - Depends on: **magnitude** - Minimum number of observations: **1** - Number of features: **1** D’Isanto et al. 2016 [DOI:10.1093/mnras/stw157](https://doi.org/10.1093/mnras/stw157) "#; } #[doc = DOC!()] #[derive(Clone, Default, Debug, Serialize, Deserialize, JsonSchema)] pub struct PercentAmplitude {} lazy_info!( PERCENT_AMPLITUDE_INFO, size: 1, min_ts_length: 1, t_required: false, m_required: true, w_required: false, sorting_required: false, ); impl PercentAmplitude { pub fn new() -> Self { Self {} } pub fn doc() -> &'static str { DOC } } impl<T> FeatureEvaluator<T> for PercentAmplitude where T: Float, { fn eval(&self, ts: &mut TimeSeries<T>) -> Result<Vec<T>, EvaluatorError> { self.check_ts_length(ts)?; let m_min = ts.m.get_min(); let m_max = ts.m.get_max(); let m_median = ts.m.get_median(); Ok(vec![T::max(m_max - m_median, m_median - m_min)]) } fn get_info(&self) -> &EvaluatorInfo { &PERCENT_AMPLITUDE_INFO } fn get_names(&self) -> Vec<&str> { vec!["percent_amplitude"] } fn get_descriptions(&self) -> Vec<&str> { vec!["maximum absolute deviation of magnitude from its median"] } } #[cfg(test)] #[allow(clippy::unreadable_literal)] #[allow(clippy::excessive_precision)] mod tests { use super::*; use crate::tests::*; check_feature!(PercentAmplitude); feature_test!( percent_amplitude, [PercentAmplitude::new()], [96.0], [1.0_f32, 1.0, 1.0, 2.0, 4.0, 5.0, 5.0, 98.0, 100.0], ); }