1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
use crate::evaluator::*;
#[derive(Clone, Default, Debug)]
pub struct WeightedMean {}
lazy_info!(
WEIGHTED_MEAN_INFO,
size: 1,
min_ts_length: 1,
t_required: false,
m_required: true,
w_required: true,
sorting_required: false,
);
impl WeightedMean {
pub fn new() -> Self {
Self {}
}
}
impl<T> FeatureEvaluator<T> for WeightedMean
where
T: Float,
{
fn eval(&self, ts: &mut TimeSeries<T>) -> Result<Vec<T>, EvaluatorError> {
self.check_ts_length(ts)?;
Ok(vec![ts.get_m_weighted_mean()])
}
fn get_info(&self) -> &EvaluatorInfo {
&WEIGHTED_MEAN_INFO
}
fn get_names(&self) -> Vec<&str> {
vec!["weighted_mean"]
}
fn get_descriptions(&self) -> Vec<&str> {
vec!["magnitude averaged weighted by inverse square error"]
}
}
#[cfg(test)]
#[allow(clippy::unreadable_literal)]
#[allow(clippy::excessive_precision)]
mod tests {
use super::*;
use crate::tests::*;
eval_info_test!(weighted_mean_info, WeightedMean::default());
feature_test!(
weighted_mean,
[Box::new(WeightedMean::new())],
[1.1777777777777778],
[1.0; 5],
[0.0_f32, 1.0, 2.0, 3.0, 4.0],
Some(&[10.0, 5.0, 3.0, 2.5, 2.0]),
);
}