1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
use std::{
alloc::{self, handle_alloc_error, Layout},
iter::Skip,
marker::PhantomData,
mem,
};
use event::{ChangelogEvent, MerkleTreeEvent};
use light_bounded_vec::{
BoundedVec, BoundedVecMetadata, CyclicBoundedVec, CyclicBoundedVecIterator,
CyclicBoundedVecMetadata,
};
pub use light_hasher;
use light_hasher::Hasher;
pub mod changelog;
pub mod copy;
pub mod errors;
pub mod event;
pub mod hash;
pub mod zero_copy;
use crate::{
changelog::ChangelogEntry,
errors::ConcurrentMerkleTreeError,
event::PathNode,
hash::{compute_parent_node, compute_root},
};
/// [Concurrent Merkle tree](https://drive.google.com/file/d/1BOpa5OFmara50fTvL0VIVYjtg-qzHCVc/view)
/// which allows for multiple requests of updating leaves, without making any
/// of the requests invalid, as long as they are not modyfing the same leaf.
///
/// When any of the above happens, some of the concurrent requests are going to
/// be invalid, forcing the clients to re-generate the Merkle proof. But that's
/// still better than having such a failure after any update happening in the
/// middle of requesting the update.
///
/// Due to ability to make a decent number of concurrent update requests to be
/// valid, no lock is necessary.
#[repr(C)]
#[derive(Debug)]
// TODO(vadorovsky): The only reason why are we still keeping `HEIGHT` as a
// const generic here is that removing it would require keeping a `BoundecVec`
// inside `CyclicBoundedVec`. Casting byte slices to such nested vector is not
// a trivial task, but we might eventually do it at some point.
pub struct ConcurrentMerkleTree<H, const HEIGHT: usize>
where
H: Hasher,
{
pub height: usize,
pub canopy_depth: usize,
pub next_index: *mut usize,
pub sequence_number: *mut usize,
pub rightmost_leaf: *mut [u8; 32],
/// Hashes of subtrees.
pub filled_subtrees: BoundedVec<[u8; 32]>,
/// History of Merkle proofs.
pub changelog: CyclicBoundedVec<ChangelogEntry<HEIGHT>>,
/// History of roots.
pub roots: CyclicBoundedVec<[u8; 32]>,
/// Cached upper nodes.
pub canopy: BoundedVec<[u8; 32]>,
pub _hasher: PhantomData<H>,
}
pub type ConcurrentMerkleTree22<H> = ConcurrentMerkleTree<H, 22>;
pub type ConcurrentMerkleTree26<H> = ConcurrentMerkleTree<H, 26>;
pub type ConcurrentMerkleTree32<H> = ConcurrentMerkleTree<H, 32>;
pub type ConcurrentMerkleTree40<H> = ConcurrentMerkleTree<H, 40>;
impl<H, const HEIGHT: usize> ConcurrentMerkleTree<H, HEIGHT>
where
H: Hasher,
{
/// Number of nodes to include in canopy, based on `canopy_depth`.
#[inline(always)]
pub fn canopy_size(canopy_depth: usize) -> usize {
(1 << (canopy_depth + 1)) - 2
}
/// Size of the struct **without** dynamically sized fields (`BoundedVec`,
/// `CyclicBoundedVec`).
pub fn non_dyn_fields_size() -> usize {
// height
mem::size_of::<usize>()
// changelog_capacity
+ mem::size_of::<usize>()
// next_index
+ mem::size_of::<usize>()
// sequence_number
+ mem::size_of::<usize>()
// rightmost_leaf
+ mem::size_of::<[u8; 32]>()
// filled_subtrees (metadata)
+ mem::size_of::<BoundedVecMetadata>()
// changelog (metadata)
+ mem::size_of::<CyclicBoundedVecMetadata>()
// roots (metadata)
+ mem::size_of::<CyclicBoundedVecMetadata>()
// canopy (metadata)
+ mem::size_of::<BoundedVecMetadata>()
}
// TODO(vadorovsky): Make a macro for that.
pub fn size_in_account(
height: usize,
changelog_size: usize,
roots_size: usize,
canopy_depth: usize,
) -> usize {
// non-dynamic fields
Self::non_dyn_fields_size()
// filled_subtrees
+ mem::size_of::<[u8; 32]>() * height
// changelog
+ mem::size_of::<ChangelogEntry<HEIGHT>>() * changelog_size
// roots
+ mem::size_of::<[u8; 32]>() * roots_size
// canopy
+ mem::size_of::<[u8; 32]>() * Self::canopy_size(canopy_depth)
}
pub fn new(
height: usize,
changelog_size: usize,
roots_size: usize,
canopy_depth: usize,
) -> Result<Self, ConcurrentMerkleTreeError> {
if height == 0 || HEIGHT == 0 {
return Err(ConcurrentMerkleTreeError::HeightZero);
}
// Changelog needs to be at least 1, because it's used for storing
// Merkle paths in `append`/`append_batch`.
if changelog_size == 0 {
return Err(ConcurrentMerkleTreeError::ChangelogZero);
}
if roots_size == 0 {
return Err(ConcurrentMerkleTreeError::RootsZero);
}
let layout = Layout::new::<usize>();
let next_index = unsafe { alloc::alloc(layout) as *mut usize };
if next_index.is_null() {
handle_alloc_error(layout);
}
unsafe { *next_index = 0 };
let layout = Layout::new::<usize>();
let sequence_number = unsafe { alloc::alloc(layout) as *mut usize };
if sequence_number.is_null() {
handle_alloc_error(layout);
}
unsafe { *sequence_number = 0 };
let layout = Layout::new::<[u8; 32]>();
let rightmost_leaf = unsafe { alloc::alloc(layout) as *mut [u8; 32] };
if rightmost_leaf.is_null() {
handle_alloc_error(layout);
}
unsafe { *rightmost_leaf = [0u8; 32] };
Ok(Self {
height,
canopy_depth,
next_index,
sequence_number,
rightmost_leaf,
filled_subtrees: BoundedVec::with_capacity(height),
changelog: CyclicBoundedVec::with_capacity(changelog_size),
roots: CyclicBoundedVec::with_capacity(roots_size),
canopy: BoundedVec::with_capacity(Self::canopy_size(canopy_depth)),
_hasher: PhantomData,
})
}
/// Initializes the Merkle tree.
pub fn init(&mut self) -> Result<(), ConcurrentMerkleTreeError> {
// Initialize root.
let root = H::zero_bytes()[self.height];
self.roots.push(root);
// Initialize changelog.
let path = std::array::from_fn(|i| H::zero_bytes()[i]);
let changelog_entry = ChangelogEntry {
root,
path,
index: 0,
};
self.changelog.push(changelog_entry);
// Initialize filled subtrees.
for i in 0..self.height {
self.filled_subtrees.push(H::zero_bytes()[i]).unwrap();
}
// Initialize canopy.
for level_i in 0..self.canopy_depth {
let level_nodes = 1 << (level_i + 1);
for _ in 0..level_nodes {
let node = H::zero_bytes()[self.height - level_i - 1];
self.canopy.push(node)?;
}
}
Ok(())
}
/// Returns the index of the current changelog entry.
pub fn changelog_index(&self) -> usize {
self.changelog.last_index()
}
/// Returns the index of the current root in the tree's root buffer.
pub fn root_index(&self) -> usize {
self.roots.last_index()
}
/// Returns the current root.
pub fn root(&self) -> [u8; 32] {
// PANICS: This should never happen - there is always a root in the
// tree and `self.root_index()` should always point to an existing index.
self.roots[self.root_index()]
}
pub fn current_index(&self) -> usize {
let next_index = self.next_index();
if next_index > 0 {
next_index - 1
} else {
next_index
}
}
pub fn next_index(&self) -> usize {
unsafe { *self.next_index }
}
fn inc_next_index(&mut self) -> Result<(), ConcurrentMerkleTreeError> {
unsafe {
*self.next_index = self
.next_index()
.checked_add(1)
.ok_or(ConcurrentMerkleTreeError::IntegerOverflow)?;
}
Ok(())
}
pub fn sequence_number(&self) -> usize {
unsafe { *self.sequence_number }
}
fn inc_sequence_number(&mut self) -> Result<(), ConcurrentMerkleTreeError> {
unsafe {
*self.sequence_number = self
.sequence_number()
.checked_add(1)
.ok_or(ConcurrentMerkleTreeError::IntegerOverflow)?;
}
Ok(())
}
pub fn rightmost_leaf(&self) -> [u8; 32] {
unsafe { *self.rightmost_leaf }
}
fn set_rightmost_leaf(&mut self, leaf: &[u8; 32]) {
unsafe { *self.rightmost_leaf = *leaf };
}
pub fn update_proof_from_canopy(
&self,
leaf_index: usize,
proof: &mut BoundedVec<[u8; 32]>,
) -> Result<(), ConcurrentMerkleTreeError> {
let mut node_index = ((1 << self.height) + leaf_index) >> (self.height - self.canopy_depth);
while node_index > 1 {
// `node_index - 2` maps to the canopy index.
let canopy_index = node_index - 2;
let canopy_index = if canopy_index % 2 == 0 {
canopy_index + 1
} else {
canopy_index - 1
};
proof.push(self.canopy[canopy_index])?;
node_index >>= 1;
}
Ok(())
}
/// Returns an iterator with changelog entries newer than the requested
/// `changelog_index`.
pub fn changelog_entries(
&self,
changelog_index: usize,
) -> Result<Skip<CyclicBoundedVecIterator<'_, ChangelogEntry<HEIGHT>>>, ConcurrentMerkleTreeError>
{
// `CyclicBoundedVec::iter_from` returns an iterator which includes also
// the element indicated by the provided index.
//
// However, we want to iterate only on changelog events **newer** than
// the provided one.
//
// Calling `iter_from(changelog_index + 1)` wouldn't work. If
// `changelog_index` points to the newest changelog entry,
// `changelog_index + 1` would point to the **oldest** changelog entry.
// That would result in iterating over the whole changelog - from the
// oldest to the newest element.
Ok(self.changelog.iter_from(changelog_index)?.skip(1))
}
/// Updates the given Merkle proof.
///
/// The update is performed by checking whether there are any new changelog
/// entries and whether they contain changes which affect the current
/// proof. To be precise, for each changelog entry, it's done in the
/// following steps:
///
/// * Check if the changelog entry was directly updating the `leaf_index`
/// we are trying to update.
/// * If no (we check that condition first, since it's more likely),
/// it means that there is a change affecting the proof, but not the
/// leaf.
/// Check which element from our proof was affected by the change
/// (using the `critbit_index` method) and update it (copy the new
/// element from the changelog to our updated proof).
/// * If yes, it means that the same leaf we want to update was already
/// updated. In such case, updating the proof is not possible.
pub fn update_proof_from_changelog(
&self,
changelog_index: usize,
leaf_index: usize,
proof: &mut BoundedVec<[u8; 32]>,
) -> Result<(), ConcurrentMerkleTreeError> {
// Iterate over changelog entries starting from the requested
// `changelog_index`.
//
// Since we are interested only in subsequent, new changelog entries,
// skip the first result.
for changelog_entry in self.changelog_entries(changelog_index)? {
changelog_entry.update_proof(leaf_index, proof)?;
}
Ok(())
}
/// Checks whether the given Merkle `proof` for the given `node` (with index
/// `i`) is valid. The proof is valid when computing parent node hashes using
/// the whole path of the proof gives the same result as the given `root`.
pub fn validate_proof(
&self,
leaf: &[u8; 32],
leaf_index: usize,
proof: &BoundedVec<[u8; 32]>,
) -> Result<(), ConcurrentMerkleTreeError> {
let expected_root = self.root();
let computed_root = compute_root::<H>(leaf, leaf_index, proof)?;
if computed_root == expected_root {
Ok(())
} else {
Err(ConcurrentMerkleTreeError::InvalidProof(
expected_root,
computed_root,
))
}
}
/// Updates the leaf under `leaf_index` with the `new_leaf` value.
///
/// 1. Computes the new path and root from `new_leaf` and Merkle proof
/// (`proof`).
/// 2. Stores the new path as the latest changelog entry and increments the
/// latest changelog index.
/// 3. Stores the latest root and increments the latest root index.
/// 4. If new leaf is at the rightmost index, stores it as the new
/// rightmost leaft and stores the Merkle proof as the new rightmost
/// proof.
///
/// # Validation
///
/// This method doesn't validate the proof. Caller is responsible for
/// doing that before.
fn update_leaf_in_tree(
&mut self,
new_leaf: &[u8; 32],
leaf_index: usize,
proof: &BoundedVec<[u8; 32]>,
) -> Result<(usize, usize), ConcurrentMerkleTreeError> {
let mut current_node = *new_leaf;
let mut changelog_path = [[0u8; 32]; HEIGHT];
for (i, sibling) in proof.iter().enumerate() {
changelog_path[i] = current_node;
current_node = compute_parent_node::<H>(¤t_node, sibling, leaf_index, i)?;
}
self.inc_sequence_number()?;
let changelog_entry = ChangelogEntry::new(current_node, changelog_path, leaf_index);
self.roots.push(current_node);
// Check if the leaf is the last leaf in the tree.
if self.next_index() < (1 << self.height) {
changelog_entry.update_proof(self.next_index(), &mut self.filled_subtrees)?;
// Check if we updated the rightmost leaf.
if leaf_index >= self.current_index() {
self.set_rightmost_leaf(new_leaf);
}
}
self.changelog.push(changelog_entry);
Ok((self.changelog.last_index(), self.sequence_number()))
}
/// Replaces the `old_leaf` under the `leaf_index` with a `new_leaf`, using
/// the given `proof` and `changelog_index` (pointing to the changelog entry
/// which was the newest at the time of preparing the proof).
#[inline(never)]
pub fn update(
&mut self,
changelog_index: usize,
old_leaf: &[u8; 32],
new_leaf: &[u8; 32],
leaf_index: usize,
proof: &mut BoundedVec<[u8; 32]>,
) -> Result<(usize, usize), ConcurrentMerkleTreeError> {
let expected_proof_len = self.height - self.canopy_depth;
if proof.len() != expected_proof_len {
return Err(ConcurrentMerkleTreeError::InvalidProofLength(
expected_proof_len,
proof.len(),
));
}
if leaf_index >= self.next_index() {
return Err(ConcurrentMerkleTreeError::CannotUpdateEmpty);
}
if self.canopy_depth > 0 {
self.update_proof_from_canopy(leaf_index, proof)?;
}
if changelog_index != self.changelog_index() {
self.update_proof_from_changelog(changelog_index, leaf_index, proof)?;
}
self.validate_proof(old_leaf, leaf_index, proof)?;
self.update_leaf_in_tree(new_leaf, leaf_index, proof)
}
/// Appends a new leaf to the tree.
pub fn append(&mut self, leaf: &[u8; 32]) -> Result<(usize, usize), ConcurrentMerkleTreeError> {
self.append_batch(&[leaf])
}
/// Appends a new leaf to the tree. Saves Merkle proof to the provided
/// `proof` reference.
pub fn append_with_proof(
&mut self,
leaf: &[u8; 32],
proof: &mut BoundedVec<[u8; 32]>,
) -> Result<(usize, usize), ConcurrentMerkleTreeError> {
self.append_batch_with_proofs(&[leaf], &mut [proof])
}
/// Appends a batch of new leaves to the tree.
pub fn append_batch(
&mut self,
leaves: &[&[u8; 32]],
) -> Result<(usize, usize), ConcurrentMerkleTreeError> {
self.append_batch_common::<false>(leaves, None)
}
/// Appends a batch of new leaves to the tree. Saves Merkle proofs to the
/// provided `proofs` slice.
pub fn append_batch_with_proofs(
&mut self,
leaves: &[&[u8; 32]],
proofs: &mut [&mut BoundedVec<[u8; 32]>],
) -> Result<(usize, usize), ConcurrentMerkleTreeError> {
self.append_batch_common::<true>(leaves, Some(proofs))
}
/// Appends a batch of new leaves to the tree.
///
/// This method contains the common logic and is not intended for external
/// use. Callers should choose between [`append_batch`](ConcurrentMerkleTree::append_batch)
/// and [`append_batch_with_proofs`](ConcurrentMerkleTree::append_batch_with_proofs).
fn append_batch_common<
// The only purpose of this const generic is to force compiler to
// produce separate functions, with and without proof.
//
// Unfortunately, using `Option` is not enough:
//
// https://godbolt.org/z/fEMMfMdPc
// https://godbolt.org/z/T3dxnjMzz
//
// Using the const generic helps and ends up generating two separate
// functions:
//
// https://godbolt.org/z/zGnM7Ycn1
const WITH_PROOFS: bool,
>(
&mut self,
leaves: &[&[u8; 32]],
// Slice for saving Merkle proofs.
//
// Currently it's used only for indexed Merkle trees.
mut proofs: Option<&mut [&mut BoundedVec<[u8; 32]>]>,
) -> Result<(usize, usize), ConcurrentMerkleTreeError> {
if leaves.is_empty() {
return Err(ConcurrentMerkleTreeError::EmptyLeaves);
}
if (self.next_index() + leaves.len() - 1) >= 1 << self.height {
return Err(ConcurrentMerkleTreeError::TreeFull);
}
if leaves.len() > self.changelog.capacity() {
return Err(ConcurrentMerkleTreeError::BatchGreaterThanChangelog(
leaves.len(),
self.changelog.capacity(),
));
}
let first_leaf_index = self.next_index();
let first_changelog_index = (self.changelog.last_index() + 1) % self.changelog.capacity();
let first_sequence_number = self.sequence_number() + 1;
for (leaf_i, leaf) in leaves.iter().enumerate() {
self.changelog
.push(ChangelogEntry::<HEIGHT>::default_with_index(
first_leaf_index + leaf_i,
));
let changelog_index = self.changelog_index();
let mut current_index = self.next_index();
let mut current_node = **leaf;
// Limit until which we fill up the current Merkle path.
let fillup_index = if leaf_i < (leaves.len() - 1) {
self.next_index().trailing_ones() as usize + 1
} else {
self.height
};
self.changelog[changelog_index].path[0] = **leaf;
// Compute the whole Merkle path up to the `fillup_index`.
//
// On each iteration, we also fill up empty nodes of previous Merkle
// paths with the nodes from the current path - this way we eventually
// fill all the paths while avoiding to calculate too many hashes.
//
// `fillup_index` of the last iteration should be always equal to
// the Merkle tree height. Therefore, after the last iteration, no
// path is going to contain and empty node.
for i in 0..fillup_index {
let is_left = current_index % 2 == 0;
if is_left {
// If the current node is on the left side:
//
// U
// / \
// CUR SIB
// / \
// N N
//
// * The sibling (on the right) is a "zero node".
// * That "zero node" becomes a part of Merkle proof.
// * The upper (next current) node is `H(cur, Ø)`.
let empty_node = H::zero_bytes()[i];
if WITH_PROOFS {
// PANICS: `proofs` should be always `Some` at this point.
proofs.as_mut().unwrap()[leaf_i].push(empty_node)?;
}
self.filled_subtrees[i] = current_node;
current_node = H::hashv(&[¤t_node, &empty_node])?;
} else {
// If the current node is on the right side:
//
// U
// / \
// SIB CUR
// / \
// N N
// * The sigling on the left is a "filled subtree".
// * That "filled subtree" becomes a part of Merkle proof.
// * The upper (next current) node is `H(sib, cur)`.
if WITH_PROOFS {
// PANICS: `proofs` should be always `Some` at this point.
proofs.as_mut().unwrap()[leaf_i].push(self.filled_subtrees[i])?;
}
current_node = H::hashv(&[&self.filled_subtrees[i], ¤t_node])?;
}
if i < self.height - 1 {
self.changelog[changelog_index].path[i + 1] = current_node;
for leaf_j in 0..leaf_i {
let changelog_index =
(first_changelog_index + leaf_j) % self.changelog.capacity();
if self.changelog[changelog_index].path[i + 1] == [0u8; 32] {
self.changelog[changelog_index].path[i + 1] = current_node;
}
}
}
current_index /= 2;
}
self.changelog[changelog_index].root = current_node;
self.roots.push(current_node);
self.inc_next_index()?;
self.inc_sequence_number()?;
self.set_rightmost_leaf(leaf);
}
if self.canopy_depth > 0 {
self.update_canopy(first_changelog_index, leaves.len());
}
Ok((first_changelog_index, first_sequence_number))
}
fn update_canopy(&mut self, first_changelog_index: usize, num_leaves: usize) {
for i in 0..num_leaves {
let changelog_index = (first_changelog_index + i) % self.changelog.capacity();
for (i, path_node) in self.changelog[changelog_index]
.path
.iter()
.rev()
.take(self.canopy_depth)
.enumerate()
{
let level = self.height - i - 1;
let index =
(1 << (self.height - level)) + (self.changelog[changelog_index].index >> level);
// `index - 2` maps to the canopy index.
self.canopy[(index - 2) as usize] = *path_node;
}
}
}
#[inline(never)]
pub fn get_changelog_event(
&self,
merkle_tree_account_pubkey: [u8; 32],
first_changelog_index: usize,
first_sequence_number: usize,
num_changelog_entries: usize,
) -> Result<MerkleTreeEvent, ConcurrentMerkleTreeError> {
let mut paths = Vec::with_capacity(num_changelog_entries);
for i in 0..num_changelog_entries {
let changelog_index = (first_changelog_index + i) % self.changelog.capacity();
let mut path = Vec::with_capacity(self.height);
// Add all nodes from the changelog path.
for (level, node) in self.changelog[changelog_index].path.iter().enumerate() {
let level =
u32::try_from(level).map_err(|_| ConcurrentMerkleTreeError::IntegerOverflow)?;
let index = (1 << (self.height as u32 - level))
+ (self.changelog[changelog_index].index as u32 >> level);
path.push(PathNode {
node: node.to_owned(),
index,
});
}
// Add root.
path.push(PathNode {
node: self.changelog[changelog_index].root,
index: 1,
});
paths.push(path);
}
let index: u32 = self.changelog[first_changelog_index]
.index
.try_into()
.map_err(|_| ConcurrentMerkleTreeError::IntegerOverflow)?;
Ok(MerkleTreeEvent::V1(ChangelogEvent {
id: merkle_tree_account_pubkey,
paths,
seq: first_sequence_number as u64,
index,
}))
}
}
impl<H, const HEIGHT: usize> Drop for ConcurrentMerkleTree<H, HEIGHT>
where
H: Hasher,
{
fn drop(&mut self) {
let layout = Layout::new::<usize>();
unsafe { alloc::dealloc(self.next_index as *mut u8, layout) };
let layout = Layout::new::<usize>();
unsafe { alloc::dealloc(self.sequence_number as *mut u8, layout) };
let layout = Layout::new::<[u8; 32]>();
unsafe { alloc::dealloc(self.rightmost_leaf as *mut u8, layout) };
}
}
impl<H, const HEIGHT: usize> PartialEq for ConcurrentMerkleTree<H, HEIGHT>
where
H: Hasher,
{
fn eq(&self, other: &Self) -> bool {
self.height.eq(&other.height)
&& self.canopy_depth.eq(&other.canopy_depth)
&& self.next_index().eq(&other.next_index())
&& self.sequence_number().eq(&other.sequence_number())
&& self.rightmost_leaf().eq(&other.rightmost_leaf())
&& self
.filled_subtrees
.as_slice()
.eq(other.filled_subtrees.as_slice())
&& self.changelog.iter().eq(other.changelog.iter())
&& self.roots.iter().eq(other.roots.iter())
&& self.canopy.as_slice().eq(other.canopy.as_slice())
}
}