1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
//! A variation of the standard main loop implementation, using a background thread. // This file is part of the PulseAudio Rust language binding. // // Copyright (c) 2017 Lyndon Brown // // This library is free software; you can redistribute it and/or modify it under the terms of the // GNU Lesser General Public License as published by the Free Software Foundation; either version // 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without // even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License along with this library; // if not, see <http://www.gnu.org/licenses/>. //! # Overview //! //! The threaded main loop implementation is a special version of the standard main loop //! implementation. For the basic design, see the standard main loop documentation //! ([`::mainloop::standard`]). //! //! The added feature in the threaded main loop is that it spawns a new thread that runs the real //! main loop in the background. This allows a synchronous application to use the asynchronous API //! without risking stalling the PulseAudio library. A few synchronization primitives are available //! to access the objects attached to the event loop safely. //! //! # Creation //! //! A [`Mainloop`] object is created using [`Mainloop::new`]. This will only allocate the required //! structures though, so to use it the thread must also be started. This is done through //! [`Mainloop::start`], after which you can start using the main loop. //! //! # Destruction //! //! When the PulseAudio connection has been terminated, the thread must be stopped and the //! resources freed. Stopping the thread is done using [`Mainloop::stop`], which must be called //! without the lock (see below) held. When that function returns, the thread is stopped and the //! [`Mainloop`] object can be destroyed. //! //! Destruction of the [`Mainloop`] object is done automatically when the object falls out of scope. //! (Rust's `Drop` trait has been implemented and takes care of it). //! //! # Locking //! //! Since the PulseAudio API doesn't allow concurrent accesses to objects, a locking scheme must be //! used to guarantee safe usage. The threaded main loop API provides such a scheme through the //! functions [`Mainloop::lock`] and [`Mainloop::unlock`]. //! //! The lock is recursive, so it's safe to use it multiple times from the same thread. Just make //! sure you call [`Mainloop::unlock`] the same number of times you called [`Mainloop::lock`]. //! //! The lock needs to be held whenever you call any PulseAudio function that uses an object //! associated with this main loop. Make sure you do not hold on to the lock more than necessary //! though, as the threaded main loop stops while the lock is held. //! //! Example: //! //! ```rust,ignore //! extern crate libpulse_binding as pulse; //! //! use std::rc::Rc; //! use std::cell::RefCell; //! use pulse::mainloop::threaded::Mainloop; //! use pulse::stream:{Stream, State}; //! //! fn check_stream(m: Rc<RefCell<Mainloop>>, s: Rc<RefCell<Stream>>) { //! m.borrow_mut().lock(); //! //! let state = s.borrow().get_state(); //! //! m.borrow_mut().unlock(); //! //! match state { //! State::Ready => { printf!("Stream is ready!"); }, //! _ => { printf!("Stream is not ready!"); }, //! } //! } //! ``` //! //! # Callbacks //! //! Callbacks in PulseAudio are asynchronous, so they require extra care when using them together //! with a threaded main loop. //! //! The easiest way to turn the callback based operations into synchronous ones, is to simply wait //! for the callback to be called and continue from there. This is the approach chosen in //! PulseAudio's threaded API. //! //! ## Basic callbacks //! //! For the basic case, where all that is required is to wait for the callback to be invoked, the //! code should look something like this: //! //! Example: //! //! ```rust,ignore //! extern crate libpulse_binding as pulse; //! //! use std::rc::Rc; //! use std::cell::RefCell; //! use pulse::mainloop::threaded::Mainloop; //! use pulse::operation::State; //! use pulse::stream:Stream; //! //! fn drain_stream(m: Rc<RefCell<Mainloop>>, s: Rc<RefCell<Stream>>) { //! m.borrow_mut().lock(); //! //! // Drain //! let o = { //! let ml_ref = Rc::clone(&m); //! s.borrow_mut().drain(Some(Box::new(move |_success: bool| { //! unsafe { (*ml_ref.as_ptr()).signal(false); } //! }))) //! }; //! while o.get_state() != pulse::operation::State::Done { //! m.borrow_mut().wait(); //! } //! //! m.borrow_mut().unlock(); //! } //! ``` //! //! The function `drain_stream` will wait for the callback to be called using [`Mainloop::wait`]. //! //! If your application is multi-threaded, then this waiting must be done inside a while loop. The //! reason for this is that multiple threads might be using [`Mainloop::wait`] at the same time. //! Each thread must therefore verify that it was its callback that was invoked. Also the underlying //! OS synchronization primitives are usually not free of spurious wake-ups, so a [`Mainloop::wait`] //! must be called within a loop even if you have only one thread waiting. //! //! The callback `my_drain_callback` indicates to the main function that it has been called using //! [`Mainloop::signal`]. //! //! As you can see, [`Mainloop::wait`] may only be called with the lock held. The same thing is true //! for [`Mainloop::signal`], but as the lock is held before the callback is invoked, you do not //! have to deal with that. //! //! The functions will not dead lock because the wait function will release the lock before waiting //! and then regrab it once it has been signalled. For those of you familiar with threads, the //! behaviour is that of a condition variable. //! //! ## Data callbacks //! //! For many callbacks, simply knowing that they have been called is insufficient. The callback also //! receives some data that is desired. To access this data safely, we must extend our example a //! bit: //! //! ```rust,ignore //! extern crate libpulse_binding as pulse; //! //! use std::rc::Rc; //! use std::cell::RefCell; //! use pulse::mainloop::threaded::Mainloop; //! use pulse::stream:Stream; //! //! struct DrainCbData(Option<&mut bool>); //! //! fn drain_stream(m: Rc<RefCell<Mainloop>>, s: Rc<RefCell<Stream>>) { //! m.borrow_mut().lock(); //! //! let mut data = DrainCbData(None); //! //! // Drain //! let o = { //! let ml_ref = Rc::clone(&m); //! s.borrow_mut().drain(Some(Box::new(move |success: bool| { //! data.0 = Some(&mut success); //! unsafe { (*ml_ref.as_ptr()).signal(true); } //! }))) //! }; //! while o.get_state() != pulse::operation::State::Done { //! m.borrow_mut().wait(); //! } //! //! assert!(!data.0.is_none()); //! let success = *(data.0.take()); //! m.borrow_mut().accept(); // Allow callback to continue now //! //! match success { //! 0 => { println!("Bitter defeat..."); }, //! _ => { println!("Success!"); }, //! } //! //! m.borrow_mut().unlock(); //! } //! ``` //! //! The example is a bit silly as it would have been more simple to just copy the contents of //! `success`, but for larger data structures this can be wasteful. //! //! The difference here compared to the basic callback is the value `true` passed to //! [`Mainloop::signal`] and the call to [`Mainloop::accept`]. What will happen is that //! [`Mainloop::signal`] will signal the main function and then wait. The main function is then free //! to use the data in the callback until [`Mainloop::accept`] is called, which will allow the //! callback to continue. //! //! Note that [`Mainloop::accept`] must be called some time between exiting the while loop and //! unlocking the main loop! Failure to do so will result in a race condition. I.e. it is not okay //! to release the lock and regrab it before calling [`Mainloop::accept`]. //! //! ## Asynchronous callbacks //! //! PulseAudio also has callbacks that are completely asynchronous, meaning that they can be called //! at any time. The threaded main loop API provides the locking mechanism to handle concurrent //! accesses, but nothing else. Applications will have to handle communication from the callback to //! the main program through their own mechanisms. //! //! The callbacks that are completely asynchronous are: //! //! * State callbacks for contexts, streams, etc. //! * Subscription notifications. //! //! # Example //! //! An example program using the threaded mainloop: //! //! ```rust //! extern crate libpulse_binding as pulse; //! //! use std::rc::Rc; //! use std::cell::RefCell; //! use pulse::mainloop::threaded::Mainloop; //! use pulse::context::Context; //! use pulse::stream::Stream; //! use pulse::proplist::Proplist; //! use pulse::mainloop::api::Mainloop as MainloopTrait; //Needs to be in scope //! //! fn main() { //! let spec = pulse::sample::Spec { //! format: pulse::sample::SAMPLE_S16NE, //! channels: 2, //! rate: 44100, //! }; //! assert!(spec.is_valid()); //! //! let mut proplist = Proplist::new().unwrap(); //! proplist.sets(pulse::proplist::properties::APPLICATION_NAME, "FooApp") //! .unwrap(); //! //! let mut mainloop = Rc::new(RefCell::new(Mainloop::new() //! .expect("Failed to create mainloop"))); //! //! let mut context = Rc::new(RefCell::new(Context::new_with_proplist( //! mainloop.borrow().get_api(), //! "FooAppContext", //! &proplist //! ).expect("Failed to create new context"))); //! //! // Context state change callback //! { //! let ml_ref = Rc::clone(&mainloop); //! let context_ref = Rc::clone(&context); //! context.borrow_mut().set_state_callback(Some(Box::new(move || { //! let state = unsafe { (*context_ref.as_ptr()).get_state() }; //! match state { //! pulse::context::State::Ready | //! pulse::context::State::Failed | //! pulse::context::State::Terminated => { //! unsafe { (*ml_ref.as_ptr()).signal(false); } //! }, //! _ => {}, //! } //! }))); //! } //! //! context.borrow_mut().connect(None, pulse::context::flags::NOFLAGS, None) //! .expect("Failed to connect context"); //! //! mainloop.borrow_mut().lock(); //! mainloop.borrow_mut().start().expect("Failed to start mainloop"); //! //! // Wait for context to be ready //! loop { //! match context.borrow().get_state() { //! pulse::context::State::Ready => { break; }, //! pulse::context::State::Failed | //! pulse::context::State::Terminated => { //! eprintln!("context state failed/terminated, quitting..."); //! mainloop.borrow_mut().unlock(); //! mainloop.borrow_mut().stop(); //! return; //! }, //! _ => { mainloop.borrow_mut().wait(); }, //! } //! } //! context.borrow_mut().set_state_callback(None); //! //! let mut stream = Rc::new(RefCell::new(Stream::new( //! &mut context.borrow_mut(), //! "Music", //! &spec, //! None //! ).expect("Failed to create new stream"))); //! //! // Stream state change callback //! { //! let ml_ref = Rc::clone(&mainloop); //! let stream_ref = Rc::clone(&stream); //! stream.borrow_mut().set_state_callback(Some(Box::new(move || { //! let state = unsafe { (*stream_ref.as_ptr()).get_state() }; //! match state { //! pulse::stream::State::Ready | //! pulse::stream::State::Failed | //! pulse::stream::State::Terminated => { //! unsafe { (*ml_ref.as_ptr()).signal(false); } //! }, //! _ => {}, //! } //! }))); //! } //! //! stream.borrow_mut().connect_playback(None, None, pulse::stream::flags::START_CORKED, //! None, None).expect("Failed to connect playback"); //! //! // Wait for stream to be ready //! loop { //! match stream.borrow().get_state() { //! pulse::stream::State::Ready => { break; }, //! pulse::stream::State::Failed | //! pulse::stream::State::Terminated => { //! eprintln!("stream state failed/terminated, quitting..."); //! mainloop.borrow_mut().unlock(); //! mainloop.borrow_mut().stop(); //! return; //! }, //! _ => { mainloop.borrow_mut().wait(); }, //! } //! } //! stream.borrow_mut().set_state_callback(None); //! //! mainloop.borrow_mut().unlock(); //! //! // Our main loop //! # let mut count = 0; // For automatic unit tests, we'll spin a few times //! loop { //! mainloop.borrow_mut().lock(); //! //! // Write some data with stream.write() //! //! if stream.borrow().is_corked().unwrap() { //! stream.borrow_mut().uncork(None); //! } //! //! // Drain //! let o = { //! let ml_ref = Rc::clone(&mainloop); //! stream.borrow_mut().drain(Some(Box::new(move |_success: bool| { //! unsafe { (*ml_ref.as_ptr()).signal(false); } //! }))) //! }; //! while o.get_state() != pulse::operation::State::Done { //! mainloop.borrow_mut().wait(); //! } //! //! mainloop.borrow_mut().unlock(); //! //! // If done writing data, call `mainloop.borrow_mut().stop()` (with lock released), then //! // break! //! # //! # // Hack: Stop test getting stuck in infinite loop! //! # count += 1; //! # if count == 3 { //! # mainloop.borrow_mut().stop(); //! # break; //! # } //! } //! //! // Clean shutdown //! mainloop.borrow_mut().lock(); //! stream.borrow_mut().disconnect().unwrap(); //! mainloop.borrow_mut().unlock(); //! } //! ``` //! //! [`::mainloop::standard`]: ../standard/index.html //! [`Mainloop`]: struct.Mainloop.html //! [`Mainloop::new`]: struct.Mainloop.html#method.new //! [`Mainloop::start`]: struct.Mainloop.html#method.start //! [`Mainloop::stop`]: struct.Mainloop.html#method.stop //! [`Mainloop::lock`]: struct.Mainloop.html#method.lock //! [`Mainloop::unlock`]: struct.Mainloop.html#method.unlock //! [`Mainloop::wait`]: struct.Mainloop.html#method.wait //! [`Mainloop::signal`]: struct.Mainloop.html#method.signal //! [`Mainloop::accept`]: struct.Mainloop.html#method.accept use std; use capi; use std::rc::Rc; use std::ffi::CString; use std::ptr::null_mut; use error::PAErr; pub use capi::pa_threaded_mainloop as MainloopInternal; impl super::api::MainloopInternalType for MainloopInternal {} /// This acts as a safe interface to the internal PA Mainloop. /// /// The mainloop object pointers are further enclosed here in a ref counted wrapper, allowing this /// outer wrapper to have clean methods for creating event objects, which can cleanly pass a copy of /// the inner ref counted mainloop object to them. Giving this to events serves two purposes, /// firstly because they need the API pointer, secondly, it ensures that event objects do not /// outlive the mainloop object. pub struct Mainloop { /// The ref-counted inner data pub _inner: Rc<super::api::MainloopInner<MainloopInternal>>, } impl super::api::Mainloop for Mainloop { type MI = super::api::MainloopInner<MainloopInternal>; fn inner(&self) -> Rc<super::api::MainloopInner<MainloopInternal>> { self._inner.clone() } } impl super::api::MainloopInner<MainloopInternal> { fn drop_actual(&mut self) { unsafe { capi::pa_threaded_mainloop_free(self.ptr) }; self.ptr = null_mut::<MainloopInternal>(); self.api = null_mut::<::mainloop::api::MainloopApi>(); } } impl Mainloop { /// Allocate a new threaded main loop object. /// /// You have to call [`start`](#method.start) before the event loop thread starts running. pub fn new() -> Option<Self> { let ptr = unsafe { capi::pa_threaded_mainloop_new() }; if ptr.is_null() { return None; } let api_ptr = unsafe { capi::pa_threaded_mainloop_get_api(ptr) }; assert!(!api_ptr.is_null()); Some( Self { _inner: Rc::new( super::api::MainloopInner::<MainloopInternal> { ptr: ptr, api: unsafe { std::mem::transmute(api_ptr) }, dropfn: super::api::MainloopInner::<MainloopInternal>::drop_actual, } ), } ) } /// Start the event loop thread. pub fn start(&mut self) -> Result<(), PAErr> { match unsafe { capi::pa_threaded_mainloop_start((*self._inner).ptr) } { 0 => Ok(()), e => Err(PAErr(e)), } } /// Terminate the event loop thread cleanly. Make sure to unlock the mainloop object before /// calling this function. pub fn stop(&mut self) { unsafe { capi::pa_threaded_mainloop_stop((*self._inner).ptr); } } /// Lock the event loop object, effectively blocking the event loop thread from processing /// events. You can use this to enforce exclusive access to all objects attached to the event /// loop. This lock is recursive. This function may not be called inside the event loop thread. /// Events that are dispatched from the event loop thread are executed with this lock held. pub fn lock(&mut self) { assert!(!self.in_thread(), "lock() can not be called from within the event loop thread!"); unsafe { capi::pa_threaded_mainloop_lock((*self._inner).ptr); } } /// Unlock the event loop object, inverse of [`lock`](#method.lock). pub fn unlock(&mut self) { unsafe { capi::pa_threaded_mainloop_unlock((*self._inner).ptr); } } /// Wait for an event to be signalled by the event loop thread. You can use this to pass data /// from the event loop thread to the main thread in a synchronized fashion. This function may /// not be called inside the event loop thread. Prior to this call the event loop object needs /// to be locked using [`lock`](#method.lock). While waiting the lock will be released. /// Immediately before returning it will be acquired again. This function may spuriously wake up /// even without [`signal`](#method.signal) being called. You need to make sure to handle that! pub fn wait(&mut self) { unsafe { capi::pa_threaded_mainloop_wait((*self._inner).ptr); } } /// Signal all threads waiting for a signalling event in [`wait`](#method.wait). If /// `wait_for_accept` is non-zero, do not return before the signal was accepted by an /// [`accept`](#method.accept) call. While waiting for that condition the event loop object is /// unlocked. pub fn signal(&mut self, wait_for_accept: bool) { unsafe { capi::pa_threaded_mainloop_signal((*self._inner).ptr, wait_for_accept as i32); } } /// Accept a signal from the event thread issued with [`signal`]. /// /// This call should only be used in conjunction with [`signal`] with `wait_for_accept` as /// `true`. /// /// [`signal`]: #method.signal pub fn accept(&mut self) { unsafe { capi::pa_threaded_mainloop_accept((*self._inner).ptr); } } /// Return the return value as specified with the main loop's `quit` routine (used internally by /// threaded mainloop). pub fn get_retval(&self) -> ::def::Retval { ::def::Retval(unsafe { capi::pa_threaded_mainloop_get_retval((*self._inner).ptr) }) } /// Return the main loop abstraction layer vtable for this main loop. /// /// There is no need to free this object as it is owned by the loop and is destroyed when the /// loop is freed. /// /// Talking to PA directly with C requires fetching this pointer explicitly via this function. /// This is actually unecessary through this binding. The pointer is retrieved automatically /// upon Mainloop creation, stored internally, and automatically obtained from it by functions /// that need it. pub fn get_api<'a>(&self) -> &'a mut ::mainloop::api::MainloopApi { let ptr = (*self._inner).api; assert_eq!(false, ptr.is_null()); unsafe { &mut *ptr } } /// Returns `true` when called from within the event loop thread. pub fn in_thread(&self) -> bool { unsafe { capi::pa_threaded_mainloop_in_thread((*self._inner).ptr) != 0 } } /// Sets the name of the thread. pub fn set_name(&mut self, name: &str) { // Warning: New CStrings will be immediately freed if not bound to a variable, leading to // as_ptr() giving dangling pointers! let c_name = CString::new(name.clone()).unwrap(); unsafe { capi::pa_threaded_mainloop_set_name((*self._inner).ptr, c_name.as_ptr()); } } }