1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
//! The data structure of the in-memory version of Pijul's main
//! datastructure, used to edit and organise it (for instance before a
//! record or before outputting a file).
use backend::*;
use conflict;
use std::cmp::min;
use std::collections::{HashMap, HashSet};
use Result;

use rand;
use std;

bitflags! {
    struct Flags: u8 {
        const LINE_HALF_DELETED = 4;
        const LINE_VISITED = 2;
        const LINE_ONSTACK = 1;
    }
}

/// The elementary datum in the representation of the repository state
/// at any given point in time. We need this structure (as opposed to
/// working directly on a branch) in order to add more data, such as
/// strongly connected component identifier, to each node.
#[derive(Debug)]
pub struct Line {
    /// The internal identifier of the line.
    pub key: Key<PatchId>,

    // The status of the line with respect to a dfs of
    // a graph it appears in. This is 0 or
    // `LINE_HALF_DELETED`.
    flags: Flags,
    children: usize,
    n_children: usize,
    index: usize,
    lowlink: usize,
    scc: usize,
}

impl Line {
    pub fn is_zombie(&self) -> bool {
        self.flags.contains(Flags::LINE_HALF_DELETED)
    }
}

/// A graph, representing the whole content of the repository state at
/// a point in time. The encoding is a "flat adjacency list", where
/// each vertex contains a index `children` and a number of children
/// `n_children`. The children of that vertex are then
/// `&g.children[children .. children + n_children]`.
#[derive(Debug)]
pub struct Graph {
    /// Array of all alive lines in the graph. Line 0 is a dummy line
    /// at the end, so that all nodes have a common successor
    pub lines: Vec<Line>,
    /// Edge + index of the line in the "lines" array above. "None"
    /// means "dummy line at the end", and corresponds to line number
    /// 0.
    children: Vec<(Option<Edge>, VertexId)>,
}

#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
struct VertexId(usize);

const DUMMY_VERTEX: VertexId = VertexId(0);

impl std::ops::Index<VertexId> for Graph {
    type Output = Line;
    fn index(&self, idx: VertexId) -> &Self::Output {
        self.lines.index(idx.0)
    }
}
impl std::ops::IndexMut<VertexId> for Graph {
    fn index_mut(&mut self, idx: VertexId) -> &mut Self::Output {
        self.lines.index_mut(idx.0)
    }
}

use std::io::Write;

impl Graph {
    fn children(&self, i: VertexId) -> &[(Option<Edge>, VertexId)] {
        let ref line = self[i];
        &self.children[line.children..line.children + line.n_children]
    }

    fn child(&self, i: VertexId, j: usize) -> &(Option<Edge>, VertexId) {
        &self.children[self[i].children + j]
    }

    pub fn debug<W: Write>(
        &self,
        txn: &Txn,
        branch: &Branch,
        add_others: bool,
        introduced_by: bool,
        mut w: W,
    ) -> std::io::Result<()> {
        writeln!(w, "digraph {{")?;
        let mut cache = HashMap::new();
        if add_others {
            for (line, i) in self.lines.iter().zip(0..) {
                cache.insert(line.key, i);
            }
        }
        let mut others = HashSet::new();
        for (line, i) in self.lines.iter().zip(0..) {
            let contents = {
                if let Some(c) = txn.get_contents(line.key) {
                    let c = c.into_cow();
                    if let Ok(c) = std::str::from_utf8(&c) {
                        c.split_at(std::cmp::min(50, c.len())).0.to_string()
                    } else {
                        "<INVALID>".to_string()
                    }
                } else {
                    "".to_string()
                }
            };
            let contents = format!("{:?}", contents);
            let contents = contents.split_at(contents.len() - 1).0.split_at(1).1;
            writeln!(
                w,
                "n_{}[label=\"{}: {}.{}: {}\"];",
                i,
                i,
                line.key.patch.to_base58(),
                line.key.line.to_hex(),
                contents
            )?;

            if add_others && !line.key.is_root() {
                for (_, v) in txn.iter_nodes(branch, Some((line.key, None)))
                    .take_while(|&(k, _)| k == line.key)
                {
                    if let Some(dest) = cache.get(&v.dest) {
                        writeln!(
                            w,
                            "n_{} -> n_{}[color=red,label=\"{:?}{}{}\"];",
                            i,
                            dest,
                            v.flag.bits(),
                            if introduced_by { " " } else { "" },
                            if introduced_by {
                                v.introduced_by.to_base58()
                            } else {
                                String::new()
                            }
                        )?;
                    } else {
                        if !others.contains(&v.dest) {
                            others.insert(v.dest);
                            writeln!(
                                w,
                                "n_{}[label=\"{}.{}\",color=red];",
                                v.dest.to_base58(),
                                v.dest.patch.to_base58(),
                                v.dest.line.to_hex()
                            )?;
                        }
                        writeln!(
                            w,
                            "n_{} -> n_{}[color=red,label=\"{:?}{}{}\"];",
                            i,
                            v.dest.to_base58(),
                            v.flag.bits(),
                            if introduced_by { " " } else { "" },
                            if introduced_by {
                                v.introduced_by.to_base58()
                            } else {
                                String::new()
                            }
                        )?;
                    }
                }
            }
            for &(ref edge, VertexId(j)) in
                &self.children[line.children..line.children + line.n_children]
            {
                if let Some(ref edge) = *edge {
                    writeln!(
                        w,
                        "n_{}->n_{}[label=\"{:?}{}{}\"];",
                        i,
                        j,
                        edge.flag.bits(),
                        if introduced_by { " " } else { "" },
                        if introduced_by {
                            edge.introduced_by.to_base58()
                        } else {
                            String::new()
                        }
                    )?
                } else {
                    writeln!(w, "n_{}->n_{}[label=\"none\"];", i, j)?
                }
            }
        }
        writeln!(w, "}}")?;
        Ok(())
    }
}

use sanakirja::value::Value;
/// A "line outputter" trait.
pub trait LineBuffer<'a, T: 'a + Transaction> {
    fn output_line(&mut self, key: &Key<PatchId>, contents: Value<'a, T>) -> Result<()>;

    fn output_conflict_marker(&mut self, s: &'a str) -> Result<()>;
    fn begin_conflict(&mut self) -> Result<()> {
        self.output_conflict_marker(conflict::START_MARKER)
    }
    fn conflict_next(&mut self) -> Result<()> {
        self.output_conflict_marker(conflict::SEPARATOR)
    }
    fn end_conflict(&mut self) -> Result<()> {
        self.output_conflict_marker(conflict::END_MARKER)
    }
}

impl<'a, T: 'a + Transaction, W: std::io::Write> LineBuffer<'a, T> for W {
    fn output_line(&mut self, k: &Key<PatchId>, c: Value<T>) -> Result<()> {
        for chunk in c {
            debug!("output line {:?} {:?}", k, std::str::from_utf8(chunk));
            self.write_all(chunk)?
        }
        Ok(())
    }

    fn output_conflict_marker(&mut self, s: &'a str) -> Result<()> {
        self.write(s.as_bytes())?;
        Ok(())
    }
}

#[derive(Clone, Debug)]
pub struct Visits {
    pub first: usize,
    pub last: usize,
    pub begins_conflict: bool,
    pub ends_conflict: bool,
    pub has_brothers: bool,
}

impl Default for Visits {
    fn default() -> Self {
        Visits {
            first: 0,
            last: 0,
            ends_conflict: false,
            begins_conflict: false,
            has_brothers: false,
        }
    }
}

pub struct DFS {
    visits: Vec<Visits>,
    counter: usize,
    has_conflicts: bool,
}

impl DFS {
    pub fn new(n: usize) -> Self {
        DFS {
            visits: vec![Visits::default(); n],
            counter: 1,
            has_conflicts: false,
        }
    }
}

impl DFS {
    fn mark_discovered(&mut self, scc: usize) {
        if self.visits[scc].first == 0 {
            self.visits[scc].first = self.counter;
            self.counter += 1;
        }
    }

    fn mark_last_visit(&mut self, scc: usize) {
        self.mark_discovered(scc);
        self.visits[scc].last = self.counter;
        self.counter += 1;
    }

    fn first_visit(&self, scc: usize) -> usize {
        self.visits[scc].first
    }

    fn last_visit(&self, scc: usize) -> usize {
        self.visits[scc].last
    }

    fn ends_conflict(&mut self, scc: usize) {
        self.visits[scc].ends_conflict = true
    }
    fn begins_conflict(&mut self, scc: usize) {
        self.visits[scc].begins_conflict = true;
        self.has_conflicts = true
    }
    fn has_brothers(&mut self, scc: usize) {
        self.visits[scc].has_brothers = true
    }
}

impl Graph {
    /// Tarjan's strongly connected component algorithm, returning a
    /// vector of strongly connected components, where each SCC is a
    /// vector of vertex indices.
    fn tarjan(&mut self) -> Vec<Vec<VertexId>> {
        if self.lines.len() <= 1 {
            return vec![vec![VertexId(0)]];
        }

        let mut call_stack = vec![(VertexId(1), 0, true)];

        let mut index = 0;
        let mut stack = Vec::new();
        let mut scc = Vec::new();
        while let Some((n_l, i, first_visit)) = call_stack.pop() {
            if first_visit {
                // First time we visit this node.
                let ref mut l = self[n_l];
                debug!("tarjan: {:?}", l.key);
                (*l).index = index;
                (*l).lowlink = index;
                (*l).flags = (*l).flags | Flags::LINE_ONSTACK | Flags::LINE_VISITED;
                debug!("{:?} {:?} chi", (*l).key, (*l).n_children);
                stack.push(n_l);
                index = index + 1;
            } else {
                let &(_, n_child) = self.child(n_l, i);
                self[n_l].lowlink = std::cmp::min(self[n_l].lowlink, self[n_child].lowlink);
            }

            let call_stack_length = call_stack.len();
            for j in i..self[n_l].n_children {
                let &(_, n_child) = self.child(n_l, j);
                if !self[n_child].flags.contains(Flags::LINE_VISITED) {
                    call_stack.push((n_l, j, false));
                    call_stack.push((n_child, 0, true));
                    break;
                // self.tarjan_dfs(scc, stack, index, n_child);
                } else {
                    if self[n_child].flags.contains(Flags::LINE_ONSTACK) {
                        self[n_l].lowlink = min(self[n_l].lowlink, self[n_child].index)
                    }
                }
            }
            if call_stack_length < call_stack.len() {
                // recursive call
                continue;
            }
            // Here, all children of n_l have been visited.

            if self[n_l].index == self[n_l].lowlink {
                let mut v = Vec::new();
                loop {
                    match stack.pop() {
                        None => break,
                        Some(n_p) => {
                            self[n_p].scc = scc.len();
                            self[n_p].flags = self[n_p].flags ^ Flags::LINE_ONSTACK;
                            v.push(n_p);
                            if n_p == n_l {
                                break;
                            }
                        }
                    }
                }
                scc.push(v);
            }
        }
        scc
    }

    /// Run a depth-first search on this graph, assigning the
    /// `first_visit` and `last_visit` numbers to each node.
    fn dfs<A: Transaction, R>(
        &mut self,
        txn: &GenericTxn<A, R>,
        branch: &Branch,
        scc: &[Vec<VertexId>],
        dfs: &mut DFS,
        forward: &mut Vec<(Key<PatchId>, Edge)>,
    ) {
        let mut call_stack: Vec<(_, HashSet<usize>, _, _)> =
            vec![(scc.len() - 1, HashSet::new(), true, None)];
        while let Some((n_scc, mut forward_scc, is_first_child, descendants)) = call_stack.pop() {
            debug!("dfs, n_scc = {:?}", n_scc);
            for &VertexId(id) in scc[n_scc].iter() {
                debug!("dfs, n_scc: {:?}", self.lines[id].key);
            }
            dfs.mark_discovered(n_scc);
            debug!(
                "scc: {:?}, first {} last {}",
                n_scc,
                dfs.first_visit(n_scc),
                dfs.last_visit(n_scc)
            );
            let mut descendants = if let Some(descendants) = descendants {
                descendants
            } else {
                // First visit / discovery of SCC n_scc.

                // After Tarjan's algorithm, the SCC numbers are in reverse
                // topological order.
                //
                // Here, we want to visit the first child in topological
                // order, hence the one with the largest SCC number first.
                //

                // Collect all descendants of this SCC, in order of increasing
                // SCC.
                let mut descendants = Vec::new();
                for cousin in scc[n_scc].iter() {
                    for &(_, n_child) in self.children(*cousin) {
                        let child_component = self[n_child].scc;
                        if child_component < n_scc {
                            // If this is a child and not a sibling.
                            descendants.push(child_component)
                        }
                    }
                }
                descendants.sort();
                debug!("sorted descendants: {:?}", descendants);
                descendants
            };

            // SCCs to which we have forward edges.
            let mut recursive_call = None;
            while let Some(child) = descendants.pop() {
                debug!(
                    "child {:?}, first {} last {}",
                    child,
                    dfs.first_visit(child),
                    dfs.last_visit(child)
                );
                if dfs.first_visit(child) == 0 {
                    // This SCC has not yet been visited, visit it.
                    recursive_call = Some(child);
                    if !is_first_child {
                        // Two incomparable children, n_scc starts a conflict
                        debug!("!is_first_child, n_scc = {:?}", n_scc);
                        dfs.begins_conflict(n_scc);
                        dfs.has_brothers(child)
                    }
                    break;
                } else if dfs.last_visit(child) < dfs.first_visit(n_scc) {
                    dfs.ends_conflict(child)
                } else if dfs.first_visit(n_scc) < dfs.first_visit(child) {
                    // This is a forward edge.
                    debug!("last_visit to {:?}: {:?}", child, dfs.last_visit(child));
                    forward_scc.insert(child);
                }
            }
            if let Some(child) = recursive_call {
                call_stack.push((n_scc, forward_scc, false, Some(descendants)));
                call_stack.push((child, HashSet::new(), true, None));
            } else {
                dfs.mark_last_visit(n_scc);
                // After this, collect forward edges.
                for cousin in scc[n_scc].iter() {
                    for &(ref edge, n_child) in self.children(*cousin) {
                        if let Some(mut edge) = *edge {
                            // Is this edge a forward edge of the DAG?
                            if forward_scc.contains(&self[n_child].scc)
                                && edge.flag.contains(EdgeFlags::PSEUDO_EDGE)
                                && !txn.test_edge(
                                    branch,
                                    self[*cousin].key,
                                    edge.dest,
                                    EdgeFlags::DELETED_EDGE,
                                    EdgeFlags::DELETED_EDGE,
                                ) {
                                debug!("forward: {:?} {:?}", self[*cousin].key, edge);
                                forward.push((self[*cousin].key, edge))
                            }

                            // Does this edge have parallel PSEUDO edges?
                            edge.flag = EdgeFlags::PSEUDO_EDGE;
                            edge.introduced_by = ROOT_PATCH_ID;
                            let mut edges = txn.iter_nodes(
                                branch,
                                Some((self[*cousin].key, Some(&edge))),
                            ).take_while(|&(k, v)| {
                                k == self[*cousin].key && v.dest == edge.dest
                                    && v.flag <= EdgeFlags::FOLDER_EDGE | EdgeFlags::PSEUDO_EDGE
                            });
                            edges.next(); // ignore the first pseudo-edge.
                            forward.extend(edges.map(|(k, &v)| (k, v))); // add all parallel edges.
                        }
                    }
                }
            }
        }
    }
}

impl<A: Transaction, R> GenericTxn<A, R> {
    /// This function constructs a graph by reading the branch from the
    /// input key. It guarantees that all nodes but the first one (index
    /// 0) have a common descendant, which is index 0.
    pub fn retrieve<'a>(&'a self, branch: &Branch, key0: Key<PatchId>) -> Graph {
        let mut graph = Graph {
            lines: Vec::new(),
            children: Vec::new(),
        };
        // Insert last "dummy" line (so that all lines have a common descendant).
        graph.lines.push(Line {
            key: ROOT_KEY,
            flags: Flags::empty(),
            children: 0,
            n_children: 0,
            index: 0,
            lowlink: 0,
            scc: 0,
        });

        // Avoid the root key.
        let mut cache: HashMap<Key<PatchId>, VertexId> = HashMap::new();
        cache.insert(ROOT_KEY.clone(), DUMMY_VERTEX);
        let mut stack = Vec::new();
        if self.get_nodes(&branch, key0, None).is_some() {
            stack.push(key0)
        }
        while let Some(key) = stack.pop() {
            if cache.contains_key(&key) {
                // We're doing a DFS here, this can definitely happen.
                continue;
            }

            let idx = VertexId(graph.lines.len());
            cache.insert(key.clone(), idx);

            debug!("{:?}", key);
            let mut is_zombie = false;
            // Does this vertex have a DELETED/DELETED+FOLDER edge
            // pointing to it?
            let mut first_edge = Edge::zero(EdgeFlags::PARENT_EDGE | EdgeFlags::DELETED_EDGE);
            let mut nodes = self.iter_nodes(&branch, Some((key, Some(&first_edge))));
            if let Some((k, v)) = nodes.next() {
                debug!("zombie? {:?} {:?}", k, v);
                if k == key
                    && (v.flag | EdgeFlags::FOLDER_EDGE == first_edge.flag | EdgeFlags::FOLDER_EDGE)
                {
                    // Does this vertex also have an alive edge
                    // pointing to it? (might not be the case for the
                    // first vertex)
                    if key == key0 {
                        first_edge.flag = EdgeFlags::PARENT_EDGE;
                        nodes = self.iter_nodes(&branch, Some((key, Some(&first_edge))));
                        if let Some((_, v)) = nodes.next() {
                            // We know the key is `key`.
                            is_zombie = v.flag | EdgeFlags::FOLDER_EDGE
                                == first_edge.flag | EdgeFlags::FOLDER_EDGE
                        }
                    } else {
                        is_zombie = true
                    }
                }
            }
            debug!("is_zombie: {:?}", is_zombie);
            let mut l = Line {
                key: key.clone(),
                flags: if is_zombie {
                    Flags::LINE_HALF_DELETED
                } else {
                    Flags::empty()
                },
                children: graph.children.len(),
                n_children: 0,
                index: 0,
                lowlink: 0,
                scc: 0,
            };

            let mut last_flag = EdgeFlags::empty();
            let mut last_dest = ROOT_KEY;

            for (_, v) in self.iter_nodes(&branch, Some((key, None)))
                .take_while(|&(k, v)| {
                    k == key
                        && v.flag
                            <= EdgeFlags::PSEUDO_EDGE | EdgeFlags::FOLDER_EDGE
                                | EdgeFlags::EPSILON_EDGE
                }) {
                debug!("-> v = {:?}", v);
                if last_flag == EdgeFlags::PSEUDO_EDGE && last_dest == v.dest {
                    // This is a doubled edge, it should be removed.
                } else {
                    graph.children.push((Some(v.clone()), DUMMY_VERTEX));
                    l.n_children += 1;
                    if !cache.contains_key(&v.dest) {
                        stack.push(v.dest.clone())
                    } else {
                        debug!("v already visited");
                    }
                    last_flag = v.flag;
                    last_dest = v.dest;
                }
            }
            // If this key has no children, give it the dummy child.
            if l.n_children == 0 {
                debug!("no children for {:?}", l);
                graph.children.push((None, DUMMY_VERTEX));
                l.n_children = 1;
            }
            graph.lines.push(l)
        }
        for &mut (ref child_key, ref mut child_idx) in graph.children.iter_mut() {
            if let Some(ref child_key) = *child_key {
                if let Some(idx) = cache.get(&child_key.dest) {
                    *child_idx = *idx
                }
            }
        }
        graph
    }
}

/// The conflict markers keep track of the number of conflicts, and is
/// used for outputting conflicts to a given LineBuffer.
///
/// "Zombie" conflicts are those conflicts introduced by zombie
/// vertices in the contained Graph.
struct ConflictMarkers<'b> {
    current_is_zombie: bool,
    current_conflicts: usize,
    graph: &'b Graph,
}

impl<'b> ConflictMarkers<'b> {
    fn output_zombie_markers_if_needed<'a, A: Transaction + 'a, B: LineBuffer<'a, A>>(
        &mut self,
        buf: &mut B,
        vertex: VertexId,
    ) -> Result<()> {
        if self.graph[vertex].is_zombie() {
            if !self.current_is_zombie {
                debug!("begin zombie conflict: vertex = {:?}", self.graph[vertex]);
                self.current_is_zombie = true;
                buf.begin_conflict()?;
            }
        } else if self.current_is_zombie {
            // Zombie segment has ended
            if !self.current_is_zombie {
                debug!("end zombie conflict: vertex = {:?}", self.graph[vertex]);
            }
            self.current_is_zombie = false;
            buf.end_conflict()?;
        }
        Ok(())
    }

    fn begin_conflict<'a, A: Transaction + 'a, B: LineBuffer<'a, A>>(
        &mut self,
        buf: &mut B,
    ) -> Result<()> {
        buf.begin_conflict()?;
        self.current_conflicts += 1;
        Ok(())
    }
    fn end_conflict<'a, A: Transaction + 'a, B: LineBuffer<'a, A>>(
        &mut self,
        buf: &mut B,
    ) -> Result<()> {
        if self.current_conflicts > 0 {
            buf.end_conflict()?;
            self.current_conflicts -= 1;
        }
        Ok(())
    }
}

/// In the case of nested conflicts, a single conflict sometimes needs
/// to be treated like a line.
#[derive(Debug, Clone)]
enum ConflictLine {
    Conflict(Vec<Vec<ConflictLine>>),
    Line(VertexId),
}

impl<'a, A: Transaction + 'a, R> GenericTxn<A, R> {
    fn output_conflict<B: LineBuffer<'a, A>>(
        &'a self,
        conflicts: &mut ConflictMarkers,
        buf: &mut B,
        graph: &Graph,
        scc: &[Vec<VertexId>],
        conflict: &mut [Vec<ConflictLine>],
    ) -> Result<()> {
        let mut is_first = true;
        for side in conflict {
            if !is_first && !side.is_empty() {
                buf.conflict_next()?;
            }
            is_first = false;
            debug!("side = {:?}", side);
            for i in side {
                match *i {
                    ConflictLine::Line(i) => {
                        conflicts.output_zombie_markers_if_needed(buf, i)?;
                        let key = graph[i].key;
                        if let Some(cont) = self.get_contents(key) {
                            debug!("outputting {:?}", cont);
                            buf.output_line(&key, cont)?;
                        }
                    }
                    ConflictLine::Conflict(ref mut c) => {
                        debug!("begin conflict {:?}", c);
                        sort_conflict(graph, c);
                        conflicts.begin_conflict(buf)?;
                        self.output_conflict(conflicts, buf, graph, scc, c)?;
                        conflicts.end_conflict(buf)?;
                        debug!("end conflict");
                    }
                }
            }
        }
        Ok(())
    }

    pub fn output_file<B: LineBuffer<'a, A>>(
        &'a self,
        branch: &Branch,
        buf: &mut B,
        graph: &mut Graph,
        forward: &mut Vec<(Key<PatchId>, Edge)>,
    ) -> Result<bool> {
        debug!("output_file");
        if graph.lines.len() <= 1 {
            return Ok(false);
        }
        let scc = graph.tarjan(); // SCCs are given here in reverse order.
        debug!("There are {} SCC", scc.len());
        debug!("SCCs = {:?}", scc);

        let mut dfs = DFS::new(scc.len());
        graph.dfs(self, branch, &scc, &mut dfs, forward);

        debug!("dfs done");

        buf.output_line(&graph.lines[1].key, Value::from_slice(b""))?;
        let mut conflict_tree = conflict_tree(graph, &scc, &dfs)?;
        debug!("conflict_tree = {:?}", conflict_tree);
        let mut conflicts = ConflictMarkers {
            current_is_zombie: false,
            current_conflicts: 0,
            graph: &graph,
        };
        self.output_conflict(&mut conflicts, buf, graph, &scc, &mut conflict_tree)?;
        // Close any remaining zombie part (if needed).
        conflicts.output_zombie_markers_if_needed(buf, DUMMY_VERTEX)?;
        debug!("/output_file");
        Ok(dfs.has_conflicts)
    }
}

fn side_ends_at(graph: &Graph, side: &[ConflictLine], id: VertexId) -> bool {
    for j in side.iter() {
        match *j {
            ConflictLine::Line(j) => {
                if graph.children(j).iter().any(|&(_, x)| x == id) {
                    return true;
                }
            }
            ConflictLine::Conflict(ref sides) => {
                if sides.iter().any(|side| side_ends_at(graph, side, id)) {
                    return true;
                }
            }
        }
    }
    false
}

fn conflict_tree(
    graph: &Graph,
    scc: &[Vec<VertexId>],
    dfs: &DFS,
) -> Result<Vec<Vec<ConflictLine>>> {
    let mut i = scc.len() - 1;

    let mut stack: Vec<Vec<Vec<ConflictLine>>> = vec![Vec::new()];
    loop {
        if dfs.visits[i].ends_conflict && stack.len() > 1 {
            debug!("End conflict {:?}", dfs.visits[i]);
            let conflict = stack.pop().unwrap();

            // First determine if all sides are ended by the same
            // line.

            let mut remaining_sides = Vec::new();
            let mut current_conflict = Vec::with_capacity(conflict.len());
            for side in conflict.iter() {
                // Is this side part of the conflict stopped by
                // this line?
                if side_ends_at(graph, side, scc[i][0]) {
                    current_conflict.push(side.clone())
                } else {
                    remaining_sides.push(side.clone())
                }
            }
            debug!("remaining sides = {:?}", remaining_sides);
            if !remaining_sides.is_empty() {
                // If there are remaining sides to the conflict, then
                // the sides that ended here must necessarily be
                // placed at the beginning of a side of the parent
                // conflict, for else this algorithm would not have
                // characterised all sides (i.e. all sides from both
                // `remaining_sides` and `current_conflict`) as part
                // of the same conflict.
                remaining_sides.push(vec![ConflictLine::Conflict(current_conflict)]);
                stack.push(remaining_sides);
            } else {
                // If this line ends the current conflict completely,
                // let's append the conflict at the end of the last
                // side of the current "pseudo-conflict" (i.e. a
                // conflict with one or more sides)
                if let Some(ref mut last) = stack.last_mut() {
                    if let Some(ref mut last) = last.last_mut() {
                        last.push(ConflictLine::Conflict(current_conflict))
                    }
                }
            }
        } else if dfs.visits[i].has_brothers {
            if let Some(ref mut top) = stack.last_mut() {
                // top is the last conflict.
                top.push(Vec::new())
            }
        }

        if scc[i].len() > 1 {
            debug!("cycle conflict: {:?}", scc);
            // In a cyclic conflict, sides are exactly the members of
            // `scc[i]`.
            if let Some(ref mut last) = stack.last_mut() {
                if let Some(ref mut last) = last.last_mut() {
                    last.push(ConflictLine::Conflict(
                        scc[i]
                            .iter()
                            .map(|&x| vec![ConflictLine::Line(x)])
                            .collect(),
                    ))
                }
            }
        } else if scc[i].len() == 1 {
            let key = graph[scc[i][0]].key;
            debug!("scc[{}].len() = 1, key = {:?}", i, key);
            if key != ROOT_KEY {
                if let Some(ref mut top) = stack.last_mut() {
                    // top is the last conflict.
                    if top.is_empty() {
                        top.push(Vec::new())
                    }
                    if let Some(ref mut last_side) = top.last_mut() {
                        last_side.push(ConflictLine::Line(scc[i][0]))
                    }
                }
            }
        }

        if dfs.visits[i].begins_conflict {
            debug!("Begin conflict {:?} {:?}", i, dfs.visits[i]);
            stack.push(Vec::new());
        }

        if i == 0 {
            break;
        } else {
            i -= 1
        }
    }
    Ok(stack.pop().unwrap())
}

fn sort_conflict(graph: &Graph, conflict: &mut [Vec<ConflictLine>]) {
    conflict.sort_by(|a, b| first_line(graph, a).cmp(&first_line(graph, b)))
}

fn first_line(graph: &Graph, conflict: &[ConflictLine]) -> Option<Key<PatchId>> {
    let mut result = None;
    for side in conflict {
        match *side {
            ConflictLine::Line(l) => {
                result = if result.is_none() {
                    Some(graph[l].key)
                } else {
                    min(result, Some(graph[l].key))
                }
            }
            ConflictLine::Conflict(ref c) => {
                let first = c.iter().filter_map(|side| first_line(graph, side)).min();
                if result.is_none() {
                    result = first
                } else if first.is_some() {
                    result = min(result, first)
                }
            }
        }
    }
    result
}

impl<'env, R: rand::Rng> MutTxn<'env, R> {
    pub fn remove_redundant_edges(
        &mut self,
        branch: &mut Branch,
        forward: &[(Key<PatchId>, Edge)],
    ) -> Result<()> {
        for &(key, edge) in forward.iter() {
            self.del_nodes_with_rev(branch, key, edge)?;
        }
        Ok(())
    }
}