1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
use log::{debug, trace};

use std::{cmp::min, io};

use crate::{codec::Hmac, crypto::BoxStreamCipher, error::SecioError};

use async_trait::async_trait;
use futures::io::Error;
use libp2prs_traits::{ReadEx, SplitEx, WriteEx};

/// SecureStreamReader
pub struct SecureStreamReader<R> {
    socket: R,

    max_frame_len: usize,

    decode_hmac: Option<Hmac>,
    decode_cipher: BoxStreamCipher,

    /// recv buffer
    /// internal buffer for 'message too big'
    ///
    /// when the input buffer is not big enough to hold the entire
    /// frame from the underlying Framed<>, the frame will be filled
    /// into this buffer so that multiple following 'read' will eventually
    /// get the message correctly
    recv_buf: Vec<u8>,
}

impl<R> SecureStreamReader<R>
where
    R: ReadEx + 'static,
{
    fn new(reader: R, max_frame_len: usize, decode_cipher: BoxStreamCipher, decode_hmac: Option<Hmac>) -> Self {
        SecureStreamReader {
            socket: reader,
            max_frame_len,
            decode_cipher,
            decode_hmac,
            recv_buf: Vec::default(),
        }
    }

    #[inline]
    fn drain(&mut self, buf: &mut [u8]) -> usize {
        // Return zero if there is no data remaining in the internal buffer.
        if self.recv_buf.is_empty() {
            return 0;
        }

        // calculate number of bytes that we can copy
        let n = ::std::cmp::min(buf.len(), self.recv_buf.len());

        // Copy data to the output buffer
        buf[..n].copy_from_slice(self.recv_buf[..n].as_ref());

        // drain n bytes of recv_buf
        self.recv_buf = self.recv_buf.split_off(n);

        n
    }

    /// Decoding data
    #[inline]
    fn decode_buffer(&mut self, mut frame: Vec<u8>) -> Result<Vec<u8>, SecioError> {
        if let Some(ref mut hmac) = self.decode_hmac {
            if frame.len() < hmac.num_bytes() {
                debug!("frame too short when decoding secio frame");
                return Err(SecioError::FrameTooShort);
            }

            let content_length = frame.len() - hmac.num_bytes();
            {
                let (crypted_data, expected_hash) = frame.split_at(content_length);
                debug_assert_eq!(expected_hash.len(), hmac.num_bytes());

                if !hmac.verify(crypted_data, expected_hash) {
                    debug!("hmac mismatch when decoding secio frame");
                    return Err(SecioError::HmacNotMatching);
                }
            }

            frame.truncate(content_length);
        }

        let out = self.decode_cipher.decrypt(&frame)?;

        Ok(out)
    }
}

#[async_trait]
impl<R> ReadEx for SecureStreamReader<R>
where
    R: ReadEx + 'static,
{
    async fn read2(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        // when there is something in recv_buffer
        let copied = self.drain(buf);
        if copied > 0 {
            debug!("drain recv buffer data size: {:?}", copied);
            return Ok(copied);
        }

        let t = self.socket.read_one_fixed(self.max_frame_len).await?;

        debug!("receive encrypted data size: {:?}", t.len());

        let decoded = self.decode_buffer(t).map_err::<io::Error, _>(|err| err.into())?;

        // when input buffer is big enough
        let n = decoded.len();
        if buf.len() >= n {
            buf[..n].copy_from_slice(decoded.as_ref());
            Ok(n)
        } else {
            // fill internal recv buffer
            self.recv_buf = decoded;
            // drain for input buffer
            let copied = self.drain(buf);
            Ok(copied)
        }
    }
}

/// SecureStreamWriter
pub struct SecureStreamWriter<W> {
    socket: W,

    encode_hmac: Option<Hmac>,
    encode_cipher: BoxStreamCipher,
}

impl<W> SecureStreamWriter<W>
where
    W: WriteEx + 'static,
{
    fn new(writer: W, encode_cipher: BoxStreamCipher, encode_hmac: Option<Hmac>) -> Self {
        SecureStreamWriter {
            socket: writer,
            encode_cipher,
            encode_hmac,
        }
    }

    /// Encoding buffer
    #[inline]
    fn encode_buffer(&mut self, buf: &[u8]) -> Vec<u8> {
        let mut out = self.encode_cipher.encrypt(buf).unwrap();
        if let Some(ref mut hmac) = self.encode_hmac {
            let signature = hmac.sign(&out[..]);
            out.extend_from_slice(signature.as_ref());
        }
        out
    }
}

#[async_trait]
impl<W> WriteEx for SecureStreamWriter<W>
where
    W: WriteEx + 'static,
{
    async fn write2(&mut self, buf: &[u8]) -> io::Result<usize> {
        debug!("start sending plain data: {:?}", buf);

        let frame = self.encode_buffer(buf);
        trace!("start sending encrypted data size: {:?}", frame.len());
        self.socket.write_one_fixed(frame.as_ref()).await?;
        Ok(buf.len())
    }

    async fn flush2(&mut self) -> io::Result<()> {
        self.socket.flush2().await
    }
    async fn close2(&mut self) -> io::Result<()> {
        self.socket.close2().await
    }
}

/// Encrypted stream
pub struct SecureStream<R, W> {
    reader: SecureStreamReader<R>,
    writer: SecureStreamWriter<W>,
    /// denotes a sequence of bytes which are expected to be
    /// found at the beginning of the stream and are checked for equality
    nonce: Vec<u8>,
}

#[allow(clippy::too_many_arguments)]
impl<R, W> SecureStream<R, W>
where
    R: ReadEx + 'static,
    W: WriteEx + 'static,
{
    /// New a secure stream
    pub(crate) fn new(
        reader: R,
        writer: W,
        max_frame_len: usize,
        decode_cipher: BoxStreamCipher,
        decode_hmac: Option<Hmac>,
        encode_cipher: BoxStreamCipher,
        encode_hmac: Option<Hmac>,
        nonce: Vec<u8>,
    ) -> Self {
        SecureStream {
            reader: SecureStreamReader::new(reader, max_frame_len, decode_cipher, decode_hmac),
            writer: SecureStreamWriter::new(writer, encode_cipher, encode_hmac),
            nonce,
        }
    }

    /// Verify nonce between local and remote
    pub(crate) async fn verify_nonce(&mut self) -> Result<(), SecioError> {
        if !self.nonce.is_empty() {
            let mut nonce = self.nonce.clone();
            let nonce_len = self.read2(&mut nonce).await?;

            trace!("verify_nonce nonce={}, my_nonce={}", nonce_len, self.nonce.len());

            let n = min(nonce.len(), self.nonce.len());
            if nonce[..n] != self.nonce[..n] {
                return Err(SecioError::NonceVerificationFailed);
            }
            self.nonce.drain(..n);
            self.nonce.shrink_to_fit();
        }

        Ok(())
    }
}

#[async_trait]
impl<R, W> ReadEx for SecureStream<R, W>
where
    R: ReadEx + 'static,
    W: WriteEx + 'static,
{
    async fn read2(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
        self.reader.read2(buf).await
    }
}

#[async_trait]
impl<R, W> WriteEx for SecureStream<R, W>
where
    R: ReadEx + 'static,
    W: WriteEx + 'static,
{
    async fn write2(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.writer.write2(buf).await
    }

    async fn flush2(&mut self) -> io::Result<()> {
        self.writer.flush2().await
    }
    async fn close2(&mut self) -> io::Result<()> {
        self.writer.close2().await
    }
}

impl<R, W> SplitEx for SecureStream<R, W>
where
    R: ReadEx + Unpin + 'static,
    W: WriteEx + Unpin + 'static,
{
    type Reader = SecureStreamReader<R>;
    type Writer = SecureStreamWriter<W>;

    fn split(self) -> (Self::Reader, Self::Writer) {
        (self.reader, self.writer)
    }
}

#[cfg(test)]
mod tests {
    use super::{Hmac, SecureStream};
    use crate::crypto::{cipher::CipherType, new_stream, CryptoMode};
    use crate::Digest;
    use bytes::BytesMut;
    use futures::channel;
    use libp2prs_runtime::{
        net::{TcpListener, TcpStream},
        task,
    };
    use libp2prs_traits::{ReadEx, SplitEx, WriteEx};

    fn test_decode_encode(cipher: CipherType) {
        let cipher_key = (0..cipher.key_size()).map(|_| rand::random::<u8>()).collect::<Vec<_>>();
        let _hmac_key: [u8; 32] = rand::random();
        let iv = (0..cipher.iv_size()).map(|_| rand::random::<u8>()).collect::<Vec<_>>();

        let data = b"hello world";

        let mut encode_cipher = new_stream(cipher, &cipher_key, &iv, CryptoMode::Encrypt);
        let mut decode_cipher = new_stream(cipher, &cipher_key, &iv, CryptoMode::Decrypt);

        let (mut decode_hmac, mut encode_hmac): (Option<Hmac>, Option<Hmac>) = match cipher {
            CipherType::ChaCha20Poly1305 | CipherType::Aes128Gcm | CipherType::Aes256Gcm => (None, None),
            _ => {
                let encode_hmac = Hmac::from_key(Digest::Sha256, &_hmac_key);
                let decode_hmac = encode_hmac.clone();
                (Some(decode_hmac), Some(encode_hmac))
            }
        };

        let mut encode_data = encode_cipher.encrypt(&data[..]).unwrap();
        if encode_hmac.is_some() {
            let signature = encode_hmac.as_mut().unwrap().sign(&encode_data[..]);
            encode_data.extend_from_slice(signature.as_ref());
        }

        if decode_hmac.is_some() {
            let content_length = encode_data.len() - decode_hmac.as_mut().unwrap().num_bytes();

            let (crypted_data, expected_hash) = encode_data.split_at(content_length);

            assert!(decode_hmac.as_mut().unwrap().verify(crypted_data, expected_hash));

            encode_data.truncate(content_length);
        }

        let decode_data = decode_cipher.decrypt(&encode_data).unwrap();

        assert_eq!(&decode_data[..], &data[..]);
    }

    fn secure_codec_encode_then_decode(cipher: CipherType) {
        let cipher_key: [u8; 32] = rand::random();
        let cipher_key_clone = cipher_key;
        let iv = (0..cipher.iv_size()).map(|_| rand::random::<u8>()).collect::<Vec<_>>();
        let iv_clone = iv.clone();
        let key_size = cipher.key_size();
        let hmac_key: [u8; 16] = rand::random();
        let _hmac_key_clone = hmac_key;
        let data = b"hello world";
        let data_clone = &*data;
        let nonce = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9];

        let (sender, receiver) = channel::oneshot::channel::<bytes::BytesMut>();
        let (addr_sender, addr_receiver) = channel::oneshot::channel::<::std::net::SocketAddr>();

        task::spawn(async move {
            let listener = TcpListener::bind("127.0.0.1:0").await.unwrap();
            let listener_addr = listener.local_addr().unwrap();
            let _res = addr_sender.send(listener_addr);
            let (socket, _) = listener.accept().await.unwrap();
            let nonce2 = nonce.clone();
            let (decode_hmac, encode_hmac) = match cipher {
                CipherType::ChaCha20Poly1305 | CipherType::Aes128Gcm | CipherType::Aes256Gcm => (None, None),
                _ => (
                    Some(Hmac::from_key(Digest::Sha256, &_hmac_key_clone)),
                    Some(Hmac::from_key(Digest::Sha256, &_hmac_key_clone)),
                ),
            };
            let (reader, writer) = socket.split();
            let mut handle = SecureStream::new(
                reader,
                writer,
                4096_usize,
                new_stream(cipher, &cipher_key_clone[..key_size], &iv_clone, CryptoMode::Decrypt),
                decode_hmac,
                new_stream(cipher, &cipher_key_clone[..key_size], &iv_clone, CryptoMode::Encrypt),
                encode_hmac,
                nonce2,
            );

            let mut data = [0u8; 11];
            handle.read2(&mut data).await.unwrap();
            let _res = sender.send(BytesMut::from(&data[..]));
        });

        task::spawn(async move {
            let listener_addr = addr_receiver.await.unwrap();
            let stream = TcpStream::connect(&listener_addr).await.unwrap();
            let (decode_hmac, encode_hmac) = match cipher {
                CipherType::ChaCha20Poly1305 | CipherType::Aes128Gcm | CipherType::Aes256Gcm => (None, None),
                _ => (
                    Some(Hmac::from_key(Digest::Sha256, &_hmac_key_clone)),
                    Some(Hmac::from_key(Digest::Sha256, &_hmac_key_clone)),
                ),
            };
            let (reader, writer) = stream.split();
            let mut handle = SecureStream::new(
                reader,
                writer,
                4096_usize,
                new_stream(cipher, &cipher_key_clone[..key_size], &iv, CryptoMode::Decrypt),
                decode_hmac,
                new_stream(cipher, &cipher_key_clone[..key_size], &iv, CryptoMode::Encrypt),
                encode_hmac,
                Vec::new(),
            );

            let _res = handle.write2(&data_clone[..]).await;
        });

        task::block_on(async move {
            let received = receiver.await.unwrap();
            assert_eq!(received.to_vec(), data);
        });
    }

    #[test]
    fn test_encode_decode_aes128ctr() {
        test_decode_encode(CipherType::Aes128Ctr);
    }

    #[test]
    fn test_encode_decode_aes128gcm() {
        test_decode_encode(CipherType::Aes128Gcm);
    }

    #[test]
    fn test_encode_decode_aes256gcm() {
        test_decode_encode(CipherType::Aes256Gcm);
    }

    #[test]
    fn test_encode_decode_chacha20poly1305() {
        test_decode_encode(CipherType::ChaCha20Poly1305);
    }

    #[test]
    fn secure_codec_encode_then_decode_aes128gcm() {
        secure_codec_encode_then_decode(CipherType::Aes128Gcm);
    }

    #[test]
    fn secure_codec_encode_then_decode_aes256gcm() {
        secure_codec_encode_then_decode(CipherType::Aes256Gcm);
    }

    #[test]
    fn secure_codec_encode_then_decode_chacha20poly1305() {
        secure_codec_encode_then_decode(CipherType::ChaCha20Poly1305);
    }
}