1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#[cfg(test)]
pub mod tests;

#[cfg(test)]
use crate::test_util::journal::TestTransaction as Transaction;
#[cfg(test)]
use crate::test_util::journal::TestWriteJournal as WriteJournal;
use crate::util::div_mod_pow2;
use crate::util::div_pow2;
use crate::util::floor_pow2;
use crate::util::mod_pow2;
use num_derive::FromPrimitive;
use num_traits::FromPrimitive;
use off64::int::create_u64_be;
use off64::int::Off64ReadInt;
use off64::int::Off64WriteMutInt;
use off64::usz;
use std::sync::Arc;
use tracing::info;
#[cfg(not(test))]
use write_journal::Transaction;
#[cfg(not(test))]
use write_journal::WriteJournal;

pub(crate) const MIN_PAGE_SIZE_POW2: u8 = 8;
pub(crate) const MAX_PAGE_SIZE_POW2: u8 = 32;

// Bytes to reserve per page.
const PAGE_HEADER_CAP_POW2: u8 = 4;
pub(crate) const PAGE_HEADER_CAP: u64 = 1 << PAGE_HEADER_CAP_POW2;

const FREE_PAGE_OFFSETOF_PREV: u64 = 0;
const FREE_PAGE_OFFSETOF_NEXT: u64 = FREE_PAGE_OFFSETOF_PREV + 5;

const OBJECT_OFFSETOF_PREV: u64 = 0;
const OBJECT_OFFSETOF_NEXT: u64 = OBJECT_OFFSETOF_PREV + 5;
const OBJECT_OFFSETOF_DELETED_SEC: u64 = OBJECT_OFFSETOF_NEXT + 5;
const OBJECT_OFFSETOF_META_SIZE_AND_STATE: u64 = OBJECT_OFFSETOF_DELETED_SEC + 5;

pub(crate) trait PageHeader {
  /// Many device offsets can be reduced by 1 byte by right shifting by MIN_PAGE_SIZE_POW2 because it can't refer to anything more granular than a page. Remember to left shift when deserialising.
  fn serialize(&self, out: &mut [u8]);
  fn deserialize(raw: &[u8]) -> Self;
}

pub(crate) struct FreePagePageHeader {
  pub prev: u64,
  pub next: u64,
}

impl PageHeader for FreePagePageHeader {
  fn serialize(&self, out: &mut [u8]) {
    out.write_u40_be_at(FREE_PAGE_OFFSETOF_PREV, self.prev >> MIN_PAGE_SIZE_POW2);
    out.write_u40_be_at(FREE_PAGE_OFFSETOF_NEXT, self.next >> MIN_PAGE_SIZE_POW2);
  }

  fn deserialize(raw: &[u8]) -> Self {
    Self {
      prev: raw.read_u40_be_at(FREE_PAGE_OFFSETOF_PREV) << MIN_PAGE_SIZE_POW2,
      next: raw.read_u40_be_at(FREE_PAGE_OFFSETOF_NEXT) << MIN_PAGE_SIZE_POW2,
    }
  }
}

#[derive(PartialEq, Eq, Clone, Copy, Debug, FromPrimitive)]
#[repr(u8)]
pub(crate) enum ObjectState {
  // Avoid 0 to detect uninitialised/missing/corrupt state.
  Incomplete = 1,
  Committed,
  Deleted,
}

pub(crate) struct ObjectPageHeader {
  // Device offset of prev/next inode in incomplete/deleted/bucket linked list, or zero if tail.
  pub prev: u64,
  pub next: u64,
  // Timestamp in seconds since epoch.
  pub deleted_sec: Option<u64>,
  pub state: ObjectState,
  pub metadata_size_pow2: u8,
}

impl PageHeader for ObjectPageHeader {
  fn serialize(&self, out: &mut [u8]) {
    out.write_u40_be_at(OBJECT_OFFSETOF_PREV, self.prev >> MIN_PAGE_SIZE_POW2);
    out.write_u40_be_at(OBJECT_OFFSETOF_NEXT, self.next >> MIN_PAGE_SIZE_POW2);
    out.write_u40_be_at(OBJECT_OFFSETOF_DELETED_SEC, self.deleted_sec.unwrap_or(0));
    out[usz!(OBJECT_OFFSETOF_META_SIZE_AND_STATE)] =
      (self.metadata_size_pow2 << 3) | (self.state as u8);
  }

  fn deserialize(raw: &[u8]) -> Self {
    let b = raw[usz!(OBJECT_OFFSETOF_META_SIZE_AND_STATE)];
    Self {
      prev: raw.read_u40_be_at(OBJECT_OFFSETOF_PREV) << MIN_PAGE_SIZE_POW2,
      next: raw.read_u40_be_at(OBJECT_OFFSETOF_NEXT) << MIN_PAGE_SIZE_POW2,
      deleted_sec: Some(raw.read_u40_be_at(OBJECT_OFFSETOF_DELETED_SEC)).filter(|ts| *ts != 0),
      state: ObjectState::from_u8(b & 0b111).unwrap(),
      metadata_size_pow2: b >> 3,
    }
  }
}

pub(crate) struct Pages {
  // To access the overlay.
  journal: Arc<WriteJournal>,
  heap_dev_offset: u64,
  block_size_pow2: u8,
  pages_per_lpage_pow2: u8,
  /// WARNING: Do not modify after creation.
  pub block_size: u64,
  /// WARNING: Do not modify after creation.
  pub lpage_size_pow2: u8,
  /// WARNING: Do not modify after creation.
  pub spage_size_pow2: u8,
}

impl Pages {
  pub fn new(
    journal: Arc<WriteJournal>,
    heap_dev_offset: u64,
    spage_size_pow2: u8,
    lpage_size_pow2: u8,
  ) -> Pages {
    assert!(spage_size_pow2 >= MIN_PAGE_SIZE_POW2);
    assert!(lpage_size_pow2 >= spage_size_pow2 && lpage_size_pow2 <= MAX_PAGE_SIZE_POW2);
    // For fast bitwise calculations to be correct, the heap needs to be aligned to `2^lpage_size_pow2` i.e. start at an address that is a multiple of the largest page size in bytes.
    assert_eq!(mod_pow2(heap_dev_offset, lpage_size_pow2), 0);
    // `lpage` means a page of the largest size. `spage` means a page of the smallest size. A data lpage contains actual data, while a metadata lpage contains the free page bitmap for all pages in the following N data lpages (see following code for value of N). Both are lpages (i.e. pages of the largest page size). A data lpage can have X pages, where X is how many pages of all sizes and offsets it could have.
    // A metadata lpage and the following data lpages it covers constitute a block.
    // The page count per lpage is equal to `2 * (2^lpage_size_pow2 / 2^spage_size_pow2) - 1`, which is identical to `2^(1 + lpage_size_pow2 - spage_size_pow2) - 1`, but we add one to keep it a power of two. It's equivalent to the count of nodes in a full binary tree, where leaf nodes are the spages and the root node is the sole lpage.
    let pages_per_lpage_pow2 = 1 + lpage_size_pow2 - spage_size_pow2;
    // Calculate how many data lpages we can track in one metadata lpage; we need one bit to track one page. This is equal to `2^lpage_size_pow2 * 8 / 2^pages_per_lpage_pow2`, which is identical to `2^(lpage_size_pow2 + 3 - pages_per_lpage_pow2)`.
    let lpages_per_block_pow2 = lpage_size_pow2 + 3 - pages_per_lpage_pow2;
    // To keep calculations fast, we only store for the next N data lpages where N is a power of two minus one. This way, any device offset in those data lpages can get the device offset of the start of their corresponding metadata lpage with a simple bitwise AND, and the size of a block is simply `2^data_lpages_max_pow2 * 2^lpage_size_pow2` since one data lpage is effectively replaced with a metadata lpage. However, this does mean that the metadata lpage wastes some space.
    let block_size_pow2 = lpages_per_block_pow2 + lpage_size_pow2;
    let block_size = 1 << block_size_pow2;
    info!(block_size, "page config");
    Pages {
      block_size_pow2,
      block_size,
      heap_dev_offset,
      journal,
      lpage_size_pow2,
      pages_per_lpage_pow2,
      spage_size_pow2,
    }
  }

  #[allow(unused)]
  pub fn spage_size(&self) -> u64 {
    1 << self.spage_size_pow2
  }

  #[allow(unused)]
  pub fn lpage_size(&self) -> u64 {
    1 << self.lpage_size_pow2
  }

  fn assert_valid_page_dev_offset(&self, page_dev_offset: u64) {
    // Must be in the heap.
    assert!(
      page_dev_offset >= self.heap_dev_offset,
      "page dev offset {page_dev_offset} is not in the heap"
    );
    // Must not be in a metadata lpage. Note that the heap is only aligned to lpage, not an entire block, so we must first subtract the heap dev offset.
    assert!(
      mod_pow2(page_dev_offset - self.heap_dev_offset, self.block_size_pow2) >= self.lpage_size(),
      "page dev offset {page_dev_offset} is in a metadata lpage"
    );
    // Must be a multiple of the spage size.
    assert_eq!(
      mod_pow2(page_dev_offset, self.spage_size_pow2),
      0,
      "page dev offset {page_dev_offset} is not a multiple of spage"
    );
  }

  fn get_page_free_bit_offset(&self, page_dev_offset: u64, page_size_pow2: u8) -> (u64, u64) {
    self.assert_valid_page_dev_offset(page_dev_offset);
    // Heap is only aligned to lpage, not an entire block, so we must add/subtract the heap dev offset.
    let block_dev_offset = self.heap_dev_offset
      + floor_pow2(page_dev_offset - self.heap_dev_offset, self.block_size_pow2);
    // We store our bitmap like a binary tree, where the root node is the lpage, and leaf nodes are spages.
    // Let's assume each bit is like an array element with a u64 index, and the array starts at index 1. Then, given `spage_pow2 == 2` and `lpage_pow2 == 16`:
    // Index 1  (0b0001) = page16_0 => page_pow2 == lpage_pow2 - (63 - lead_zeros) = 16 - (63 - 63) = 16
    // Index 2  (0b0010) = page15_0 => page_pow2 == lpage_pow2 - (63 - lead_zeros) = 16 - (63 - 62) = 15
    // Index 3  (0b0011) = page15_1 => page_pow2 == lpage_pow2 - (63 - lead_zeros) = 16 - (63 - 62) = 15
    // Index 4  (0b0100) = page14_0 => page_pow2 == lpage_pow2 - (63 - lead_zeros) = 16 - (63 - 61) = 14
    // Index 5  (0b0101) = page14_1 => ...
    // Index 6  (0b0110) = page14_2
    // Index 7  (0b0111) = page14_3
    // Index 8  (0b1000) = page13_0
    // Index 9  (0b1001) = page13_1
    // Index 10 (0b1010) = page13_2
    // ...
    // Based on the above pattern, we can determine that the index for a page of size 2^S and zero-based position N,
    // the 1-based index I is `(1 << (lpage_pow2 - S)) | N`, where `N = (page_dev_offset - lpage_dev_offset) / 2^S`.
    // Now:
    // - We have multiple lpages per block, not just one.
    // - We split our bitmaps into 64-bit integers to reduce load on overlay bucket.
    // - Indices are 0-based, not 1-based.
    // So:
    // - Get the lpage number within the block.
    // - Get the page number within the lpage (`N`).
    // - Get the u64 value at element `(I - 1) / 64`, which is at dev offset `metadata_lpage_dev_offset + ((I - 1) / 64) * 8`.
    // - Get the bit at position `(I - 1) % 64`.
    let (lpage_n, offset_within_lpage) =
      div_mod_pow2(page_dev_offset - block_dev_offset, self.lpage_size_pow2);
    let lpage_dev_offset = page_dev_offset - offset_within_lpage;
    let n = div_pow2(page_dev_offset - lpage_dev_offset, page_size_pow2);
    let i = (lpage_n * (1 << self.pages_per_lpage_pow2))
      | (1 << (self.lpage_size_pow2 - page_size_pow2))
      | n;
    let (elem, bit) = div_mod_pow2(i - 1, 6);
    let elem_dev_offset = block_dev_offset + (elem * 8);

    (elem_dev_offset, bit)
  }

  pub async fn is_page_free(&self, page_dev_offset: u64, page_size_pow2: u8) -> bool {
    let (elem_dev_offset, bit) = self.get_page_free_bit_offset(page_dev_offset, page_size_pow2);
    let bitmap = self
      .journal
      .read_with_overlay(elem_dev_offset, 8)
      .await
      .read_u64_be_at(0);
    (bitmap & (1 << bit)) != 0
  }

  pub async fn mark_page_as_free(
    &self,
    txn: &mut Transaction,
    page_dev_offset: u64,
    page_size_pow2: u8,
  ) {
    let (elem_dev_offset, bit) = self.get_page_free_bit_offset(page_dev_offset, page_size_pow2);
    let bitmap = self
      .journal
      .read_with_overlay(elem_dev_offset, 8)
      .await
      .read_u64_be_at(0);
    txn.write_with_overlay(elem_dev_offset, create_u64_be(bitmap | (1 << bit)));
  }

  pub async fn mark_page_as_not_free(
    &self,
    txn: &mut Transaction,
    page_dev_offset: u64,
    page_size_pow2: u8,
  ) {
    let (elem_dev_offset, bit) = self.get_page_free_bit_offset(page_dev_offset, page_size_pow2);
    let bitmap = self
      .journal
      .read_with_overlay(elem_dev_offset, 8)
      .await
      .read_u64_be_at(0);
    txn.write_with_overlay(elem_dev_offset, create_u64_be(bitmap & !(1 << bit)));
  }

  pub async fn read_page_header<H: PageHeader>(&self, page_dev_offset: u64) -> H {
    self.assert_valid_page_dev_offset(page_dev_offset);
    let raw = self
      .journal
      .read_with_overlay(page_dev_offset, PAGE_HEADER_CAP)
      .await;
    H::deserialize(&raw)
  }

  pub fn write_page_header<H: PageHeader>(
    &self,
    txn: &mut Transaction,
    page_dev_offset: u64,
    h: H,
  ) {
    self.assert_valid_page_dev_offset(page_dev_offset);
    let mut out = vec![0u8; usz!(PAGE_HEADER_CAP)];
    h.serialize(&mut out);
    txn.write_with_overlay(page_dev_offset, out);
  }

  pub async fn update_page_header<H: PageHeader>(
    &self,
    txn: &mut Transaction,
    page_dev_offset: u64,
    f: impl FnOnce(&mut H) -> (),
  ) {
    let mut hdr = self.read_page_header(page_dev_offset).await;
    f(&mut hdr);
    self.write_page_header(txn, page_dev_offset, hdr);
  }
}