1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
//! Compiletime lists/tuples used throughout the `LibAFL` universe

#[cfg(feature = "alloc")]
use alloc::{borrow::Cow, vec::Vec};
#[cfg(feature = "alloc")]
use core::ops::{Deref, DerefMut};
use core::{
    any::{type_name, TypeId},
    cell::Cell,
    fmt::{Debug, Formatter},
    marker::PhantomData,
    mem::transmute,
    ops::{Index, IndexMut},
    ptr::{addr_of, addr_of_mut},
};

#[cfg(feature = "alloc")]
use serde::{Deserialize, Serialize};
pub use tuple_list::{tuple_list, tuple_list_type, TupleList};

#[cfg(any(feature = "xxh3", feature = "alloc"))]
use crate::hash_std;
use crate::HasLen;
#[cfg(feature = "alloc")]
use crate::Named;

/// Returns if the type `T` is equal to `U`, ignoring lifetimes.
#[inline] // this entire call gets optimized away :)
#[must_use]
pub fn type_eq<T: ?Sized, U: ?Sized>() -> bool {
    // decider struct: hold a cell (which we will update if the types are unequal) and some
    // phantom data using a function pointer to allow for Copy to be implemented
    struct W<'a, T: ?Sized, U: ?Sized>(&'a Cell<bool>, PhantomData<fn() -> (&'a T, &'a U)>);

    // default implementation: if the types are unequal, we will use the clone implementation
    impl<'a, T: ?Sized, U: ?Sized> Clone for W<'a, T, U> {
        #[inline]
        fn clone(&self) -> Self {
            // indicate that the types are unequal
            // unfortunately, use of interior mutability (Cell) makes this not const-compatible
            // not really possible to get around at this time
            self.0.set(false);
            W(self.0, self.1)
        }
    }

    // specialized implementation: Copy is only implemented if the types are the same
    #[allow(clippy::mismatching_type_param_order)]
    impl<'a, T: ?Sized> Copy for W<'a, T, T> {}

    let detected = Cell::new(true);
    // [].clone() is *specialized* in core.
    // Types which implement copy will have their copy implementations used, falling back to clone.
    // If the types are the same, then our clone implementation (which sets our Cell to false)
    // will never be called, meaning that our Cell's content remains true.
    let res = [W::<T, U>(&detected, PhantomData)].clone();
    res[0].0.get()
}

/// Borrow each member of the tuple
pub trait SplitBorrow<'a> {
    /// The Resulting [`TupleList`], of an [`SplitBorrow::borrow()`] call
    type SplitBorrowResult;
    /// The Resulting [`TupleList`], of an [`SplitBorrow::borrow_mut()`] call
    type SplitBorrowMutResult;

    /// Return a tuple of borrowed references
    fn borrow(&'a self) -> Self::SplitBorrowResult;
    /// Return a tuple of borrowed mutable references
    fn borrow_mut(&'a mut self) -> Self::SplitBorrowMutResult;
}

impl<'a> SplitBorrow<'a> for () {
    type SplitBorrowResult = ();
    type SplitBorrowMutResult = ();

    fn borrow(&'a self) -> Self::SplitBorrowResult {}

    fn borrow_mut(&'a mut self) -> Self::SplitBorrowMutResult {}
}

impl<'a, Head, Tail> SplitBorrow<'a> for (Head, Tail)
where
    Head: 'a,
    Tail: SplitBorrow<'a>,
{
    type SplitBorrowResult = (Option<&'a Head>, Tail::SplitBorrowResult);
    type SplitBorrowMutResult = (Option<&'a mut Head>, Tail::SplitBorrowMutResult);

    fn borrow(&'a self) -> Self::SplitBorrowResult {
        (Some(&self.0), self.1.borrow())
    }

    fn borrow_mut(&'a mut self) -> Self::SplitBorrowMutResult {
        (Some(&mut self.0), self.1.borrow_mut())
    }
}

/// Create a [`Vec`] from a tuple list or similar
/// (We need this trait since we cannot implement `Into` for foreign types)
#[cfg(feature = "alloc")]
pub trait IntoVec<T> {
    /// Convert this into a [`Vec`], reversed.
    /// (Having this method around makes some implementations more performant)
    fn into_vec_reversed(self) -> Vec<T>
    where
        Self: Sized,
    {
        let mut ret = self.into_vec();
        ret.reverse();
        ret
    }

    /// Convert this into a [`Vec`].
    fn into_vec(self) -> Vec<T>;
}

#[cfg(feature = "alloc")]
impl<T> IntoVec<T> for () {
    #[inline]
    fn into_vec(self) -> Vec<T> {
        Vec::new()
    }
}

/// Gets the length of the element
pub trait HasConstLen {
    /// The length as constant `usize`
    const LEN: usize;
}

impl HasConstLen for () {
    const LEN: usize = 0;
}

impl<Head, Tail> HasConstLen for (Head, Tail)
where
    Tail: HasConstLen,
{
    const LEN: usize = 1 + Tail::LEN;
}

impl<Head, Tail> HasLen for (Head, Tail)
where
    Tail: HasLen,
{
    #[inline]
    fn len(&self) -> usize {
        self.1.len() + 1
    }
}

impl<Tail> HasLen for (Tail,)
where
    Tail: HasLen,
{
    #[inline]
    fn len(&self) -> usize {
        self.0.len()
    }
}

impl HasLen for () {
    #[inline]
    fn len(&self) -> usize {
        0
    }
}

/// Finds the `const_name` and `name_id`
pub trait HasNameId {
    /// Gets the `const_name` for this entry
    fn const_name(&self) -> &'static str;

    /// Gets the `name_id` for this entry
    fn name_id(&self) -> u64 {
        hash_std(self.const_name().as_bytes())
    }
}

/// Gets the id and `const_name` for the given index in a tuple
pub trait HasNameIdTuple: HasConstLen {
    /// Gets the `const_name` for the entry at the given index
    fn const_name_for(&self, index: usize) -> Option<&'static str>;

    /// Gets the `name_id` for the entry at the given index
    fn name_id_for(&self, index: usize) -> Option<u64>;
}

impl HasNameIdTuple for () {
    fn const_name_for(&self, _index: usize) -> Option<&'static str> {
        None
    }

    fn name_id_for(&self, _index: usize) -> Option<u64> {
        None
    }
}

impl<Head, Tail> HasNameIdTuple for (Head, Tail)
where
    Head: HasNameId,
    Tail: HasNameIdTuple,
{
    fn const_name_for(&self, index: usize) -> Option<&'static str> {
        if index == 0 {
            Some(self.0.const_name())
        } else {
            self.1.const_name_for(index - 1)
        }
    }

    fn name_id_for(&self, index: usize) -> Option<u64> {
        if index == 0 {
            Some(self.0.name_id())
        } else {
            self.1.name_id_for(index - 1)
        }
    }
}

/// Returns the first element with the given type
pub trait MatchFirstType {
    /// Returns the first element with the given type as borrow, or [`None`]
    fn match_first_type<T: 'static>(&self) -> Option<&T>;
    /// Returns the first element with the given type as mutable borrow, or [`None`]
    fn match_first_type_mut<T: 'static>(&mut self) -> Option<&mut T>;
}

impl MatchFirstType for () {
    fn match_first_type<T: 'static>(&self) -> Option<&T> {
        None
    }
    fn match_first_type_mut<T: 'static>(&mut self) -> Option<&mut T> {
        None
    }
}

impl<Head, Tail> MatchFirstType for (Head, Tail)
where
    Head: 'static,
    Tail: MatchFirstType,
{
    fn match_first_type<T: 'static>(&self) -> Option<&T> {
        if TypeId::of::<T>() == TypeId::of::<Head>() {
            unsafe { (addr_of!(self.0) as *const T).as_ref() }
        } else {
            self.1.match_first_type::<T>()
        }
    }

    fn match_first_type_mut<T: 'static>(&mut self) -> Option<&mut T> {
        if TypeId::of::<T>() == TypeId::of::<Head>() {
            unsafe { (addr_of_mut!(self.0) as *mut T).as_mut() }
        } else {
            self.1.match_first_type_mut::<T>()
        }
    }
}

/// Returns the first element with the given type (dereference mut version)
pub trait ExtractFirstRefType {
    /// Returns the first element with the given type as borrow, or [`None`]
    fn take<'a, T: 'static>(self) -> (Option<&'a T>, Self);
}

impl ExtractFirstRefType for () {
    fn take<'a, T: 'static>(self) -> (Option<&'a T>, Self) {
        (None, ())
    }
}

impl<Head, Tail> ExtractFirstRefType for (Option<&Head>, Tail)
where
    Head: 'static,
    Tail: ExtractFirstRefType,
{
    fn take<'a, T: 'static>(mut self) -> (Option<&'a T>, Self) {
        if TypeId::of::<T>() == TypeId::of::<Head>() {
            let r = self.0.take();
            (unsafe { transmute::<Option<&Head>, Option<&T>>(r) }, self)
        } else {
            let (r, tail) = self.1.take::<T>();
            (r, (self.0, tail))
        }
    }
}

impl<Head, Tail> ExtractFirstRefType for (Option<&mut Head>, Tail)
where
    Head: 'static,
    Tail: ExtractFirstRefType,
{
    fn take<'a, T: 'static>(mut self) -> (Option<&'a T>, Self) {
        if TypeId::of::<T>() == TypeId::of::<Head>() {
            let r = self.0.take();
            (
                unsafe { transmute::<Option<&mut Head>, Option<&T>>(r) },
                self,
            )
        } else {
            let (r, tail) = self.1.take::<T>();
            (r, (self.0, tail))
        }
    }
}

/// Returns the first element with the given type (dereference mut version)
pub trait ExtractFirstRefMutType {
    /// Returns the first element with the given type as borrow, or [`None`]
    fn take<'a, T: 'static>(self) -> (Option<&'a mut T>, Self);
}

impl ExtractFirstRefMutType for () {
    fn take<'a, T: 'static>(self) -> (Option<&'a mut T>, Self) {
        (None, ())
    }
}

impl<Head, Tail> ExtractFirstRefMutType for (Option<&mut Head>, Tail)
where
    Head: 'static,
    Tail: ExtractFirstRefMutType,
{
    fn take<'a, T: 'static>(mut self) -> (Option<&'a mut T>, Self) {
        if TypeId::of::<T>() == TypeId::of::<Head>() {
            let r = self.0.take();
            (
                unsafe { transmute::<Option<&mut Head>, Option<&mut T>>(r) },
                self,
            )
        } else {
            let (r, tail) = self.1.take::<T>();
            (r, (self.0, tail))
        }
    }
}

/// Borrow each member of the tuple
pub trait SplitBorrowExtractFirstType<'a> {
    /// The Resulting [`TupleList`], of an [`SplitBorrow::borrow()`] call
    type SplitBorrowResult: ExtractFirstRefType;
    /// The Resulting [`TupleList`], of an [`SplitBorrow::borrow_mut()`] call
    type SplitBorrowMutResult: ExtractFirstRefType + ExtractFirstRefMutType;

    /// Return a tuple of borrowed references
    fn borrow(&'a self) -> Self::SplitBorrowResult;
    /// Return a tuple of borrowed mutable references
    fn borrow_mut(&'a mut self) -> Self::SplitBorrowMutResult;
}

impl<'a> SplitBorrowExtractFirstType<'a> for () {
    type SplitBorrowResult = ();
    type SplitBorrowMutResult = ();

    fn borrow(&'a self) -> Self::SplitBorrowResult {}

    fn borrow_mut(&'a mut self) -> Self::SplitBorrowMutResult {}
}

impl<'a, Head, Tail> SplitBorrowExtractFirstType<'a> for (Head, Tail)
where
    Head: 'static,
    Tail: SplitBorrowExtractFirstType<'a>,
{
    type SplitBorrowResult = (Option<&'a Head>, Tail::SplitBorrowResult);
    type SplitBorrowMutResult = (Option<&'a mut Head>, Tail::SplitBorrowMutResult);

    fn borrow(&'a self) -> Self::SplitBorrowResult {
        (Some(&self.0), self.1.borrow())
    }

    fn borrow_mut(&'a mut self) -> Self::SplitBorrowMutResult {
        (Some(&mut self.0), self.1.borrow_mut())
    }
}

/// Match by type
pub trait MatchType {
    /// Match by type and call the passed `f` function with a borrow, if found
    fn match_type<T: 'static, FN: FnMut(&T)>(&self, f: &mut FN);
    /// Match by type and call the passed `f` function with a mutable borrow, if found
    fn match_type_mut<T: 'static, FN: FnMut(&mut T)>(&mut self, f: &mut FN);
}

impl MatchType for () {
    /// Match by type and call the passed `f` function with a borrow, if found
    fn match_type<T: 'static, FN: FnMut(&T)>(&self, _: &mut FN) {}
    /// Match by type and call the passed `f` function with a mutable borrow, if found
    fn match_type_mut<T: 'static, FN: FnMut(&mut T)>(&mut self, _: &mut FN) {}
}

impl<Head, Tail> MatchType for (Head, Tail)
where
    Head: 'static,
    Tail: MatchType,
{
    fn match_type<T: 'static, FN: FnMut(&T)>(&self, f: &mut FN) {
        // Switch this check to https://stackoverflow.com/a/60138532/7658998 when in stable and remove 'static
        if TypeId::of::<T>() == TypeId::of::<Head>() {
            f(unsafe { (addr_of!(self.0) as *const T).as_ref() }.unwrap());
        }
        self.1.match_type::<T, FN>(f);
    }

    fn match_type_mut<T: 'static, FN: FnMut(&mut T)>(&mut self, f: &mut FN) {
        // Switch this check to https://stackoverflow.com/a/60138532/7658998 when in stable and remove 'static
        if TypeId::of::<T>() == TypeId::of::<Head>() {
            f(unsafe { (addr_of_mut!(self.0) as *mut T).as_mut() }.unwrap());
        }
        self.1.match_type_mut::<T, FN>(f);
    }
}

#[cfg(feature = "alloc")]
/// A named tuple
pub trait NamedTuple: HasConstLen {
    /// Gets the name of this tuple
    fn name(&self, index: usize) -> Option<&Cow<'static, str>>;
}

#[cfg(feature = "alloc")]
impl NamedTuple for () {
    fn name(&self, _index: usize) -> Option<&Cow<'static, str>> {
        None
    }
}

#[cfg(feature = "alloc")]
impl Named for () {
    #[inline]
    fn name(&self) -> &Cow<'static, str> {
        static NAME: Cow<'static, str> = Cow::Borrowed("Empty");
        &NAME
    }
}

#[cfg(feature = "alloc")]
impl<Head, Tail> NamedTuple for (Head, Tail)
where
    Head: Named,
    Tail: NamedTuple,
{
    fn name(&self, index: usize) -> Option<&Cow<'static, str>> {
        if index == 0 {
            Some(self.0.name())
        } else {
            self.1.name(index - 1)
        }
    }
}

/// Match for a name and return the value
#[cfg(feature = "alloc")]
pub trait MatchName {
    /// Match for a name and return the borrowed value
    #[deprecated = "Use `.reference` and either `.get` (fallible access) or `[]` (infallible access) instead"]
    fn match_name<T>(&self, name: &str) -> Option<&T>;
    /// Match for a name and return the mut borrowed value
    #[deprecated = "Use `.reference` and either `.get` (fallible access) or `[]` (infallible access) instead"]
    fn match_name_mut<T>(&mut self, name: &str) -> Option<&mut T>;
}

#[cfg(feature = "alloc")]
impl MatchName for () {
    fn match_name<T>(&self, _name: &str) -> Option<&T> {
        None
    }
    fn match_name_mut<T>(&mut self, _name: &str) -> Option<&mut T> {
        None
    }
}

#[cfg(feature = "alloc")]
#[allow(deprecated)]
impl<Head, Tail> MatchName for (Head, Tail)
where
    Head: Named,
    Tail: MatchName,
{
    fn match_name<T>(&self, name: &str) -> Option<&T> {
        if type_eq::<Head, T>() && name == self.0.name() {
            unsafe { (addr_of!(self.0) as *const T).as_ref() }
        } else {
            self.1.match_name::<T>(name)
        }
    }

    fn match_name_mut<T>(&mut self, name: &str) -> Option<&mut T> {
        if type_eq::<Head, T>() && name == self.0.name() {
            unsafe { (addr_of_mut!(self.0) as *mut T).as_mut() }
        } else {
            self.1.match_name_mut::<T>(name)
        }
    }
}

/// Structs that have a [`Handle`] to reference this element by, in maps.
/// You should use this when you want to avoid specifying types.
#[cfg(feature = "alloc")]
pub trait Handled: Named {
    /// Return the [`Handle`]
    fn handle(&self) -> Handle<Self> {
        Handle {
            name: Named::name(self).clone(),
            phantom: PhantomData,
        }
    }
}

#[cfg(feature = "alloc")]
impl<N> Handled for N where N: Named {}

/// Object with the type T and the name associated with its concrete value
#[derive(Serialize, Deserialize)]
#[cfg(feature = "alloc")]
pub struct Handle<T: ?Sized> {
    name: Cow<'static, str>,
    #[serde(skip)]
    phantom: PhantomData<T>,
}

#[cfg(feature = "alloc")]
impl<T: ?Sized> Handle<T> {
    /// Create a new [`Handle`] with the given name.
    #[must_use]
    pub fn new(name: Cow<'static, str>) -> Self {
        Self {
            name,
            phantom: PhantomData,
        }
    }

    /// Fetch the name of the referenced instance.
    ///
    /// We explicitly do *not* implement [`Named`], as this could potentially lead to confusion
    /// where we make a [`Handle`] of a [`Handle`] as [`Named`] is blanket implemented.
    #[must_use]
    pub fn name(&self) -> &Cow<'static, str> {
        &self.name
    }
}

#[cfg(feature = "alloc")]
impl<T> Clone for Handle<T> {
    fn clone(&self) -> Self {
        Self {
            name: self.name.clone(),
            phantom: PhantomData,
        }
    }
}

#[cfg(feature = "alloc")]
impl<T> Debug for Handle<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("Handle")
            .field("name", self.name())
            .field("type", &type_name::<T>())
            .finish()
    }
}

/// Search using `Handle `
#[cfg(feature = "alloc")]
pub trait MatchNameRef {
    /// Search using name and `Handle `
    fn get<T>(&self, rf: &Handle<T>) -> Option<&T>;

    /// Search using name and `Handle `
    fn get_mut<T>(&mut self, rf: &Handle<T>) -> Option<&mut T>;
}

#[cfg(feature = "alloc")]
#[allow(deprecated)]
impl<M> MatchNameRef for M
where
    M: MatchName,
{
    fn get<T>(&self, rf: &Handle<T>) -> Option<&T> {
        self.match_name::<T>(&rf.name)
    }

    fn get_mut<T>(&mut self, rf: &Handle<T>) -> Option<&mut T> {
        self.match_name_mut::<T>(&rf.name)
    }
}

/// A wrapper type to enable the indexing of [`MatchName`] implementors with `[]`.
#[cfg(feature = "alloc")]
#[derive(Copy, Clone, Debug)]
#[repr(transparent)]
pub struct RefIndexable<RM, M>(RM, PhantomData<M>);

#[cfg(feature = "alloc")]
impl<RM, M> From<RM> for RefIndexable<RM, M>
where
    RM: Deref<Target = M>,
    M: MatchName,
{
    fn from(value: RM) -> Self {
        RefIndexable(value, PhantomData)
    }
}

#[cfg(feature = "alloc")]
impl<RM, M> Deref for RefIndexable<RM, M>
where
    RM: Deref<Target = M>,
{
    type Target = RM::Target;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

#[cfg(feature = "alloc")]
impl<RM, M> DerefMut for RefIndexable<RM, M>
where
    RM: DerefMut<Target = M>,
{
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

#[cfg(feature = "alloc")]
impl<T, RM, M> Index<&Handle<T>> for RefIndexable<RM, M>
where
    RM: Deref<Target = M>,
    M: MatchName,
{
    type Output = T;

    fn index(&self, index: &Handle<T>) -> &Self::Output {
        let Some(e) = self.get(index) else {
            panic!("Could not find entry matching {index:?}")
        };
        e
    }
}

#[cfg(feature = "alloc")]
impl<T, RM, M> IndexMut<&Handle<T>> for RefIndexable<RM, M>
where
    RM: DerefMut<Target = M>,
    M: MatchName,
{
    fn index_mut(&mut self, index: &Handle<T>) -> &mut Self::Output {
        let Some(e) = self.get_mut(index) else {
            panic!("Could not find entry matching {index:?}")
        };
        e
    }
}

/// Allows prepending of values to a tuple
pub trait Prepend<T> {
    /// The Resulting [`TupleList`], of an [`Prepend::prepend()`] call,
    /// including the prepended entry.
    type PreprendResult;

    /// Prepend a value to this tuple, returning a new tuple with prepended value.
    #[must_use]
    fn prepend(self, value: T) -> (T, Self::PreprendResult);
}

/// Implement prepend for tuple list.
impl<Tail, T> Prepend<T> for Tail {
    type PreprendResult = Self;

    fn prepend(self, value: T) -> (T, Self::PreprendResult) {
        (value, self)
    }
}

/// Append to a tuple
pub trait Append<T> {
    /// The Resulting [`TupleList`], of an [`Append::append()`] call,
    /// including the appended entry.
    type AppendResult;

    /// Append Value and return the tuple
    #[must_use]
    fn append(self, value: T) -> Self::AppendResult;
}

/// Implement append for an empty tuple list.
impl<T> Append<T> for () {
    type AppendResult = (T, ());

    fn append(self, value: T) -> Self::AppendResult {
        (value, ())
    }
}

/// Implement append for non-empty tuple list.
impl<Head, Tail, T> Append<T> for (Head, Tail)
where
    Tail: Append<T>,
{
    type AppendResult = (Head, Tail::AppendResult);

    fn append(self, value: T) -> Self::AppendResult {
        let (head, tail) = self;
        (head, tail.append(value))
    }
}

/// Merge two `TupleList`
pub trait Merge<T> {
    /// The Resulting [`TupleList`], of an [`Merge::merge()`] call
    type MergeResult;

    /// Merge and return the merged tuple
    #[must_use]
    fn merge(self, value: T) -> Self::MergeResult;
}

/// Implement merge for an empty tuple list.
impl<T> Merge<T> for () {
    type MergeResult = T;

    fn merge(self, value: T) -> Self::MergeResult {
        value
    }
}

/// Implement merge for non-empty tuple list.
impl<Head, Tail, T> Merge<T> for (Head, Tail)
where
    Tail: Merge<T>,
{
    type MergeResult = (Head, Tail::MergeResult);

    fn merge(self, value: T) -> Self::MergeResult {
        let (head, tail) = self;
        (head, tail.merge(value))
    }
}

/// Trait for structs which are capable of mapping a given type to another.
pub trait MappingFunctor<T> {
    /// The result of the mapping operation.
    type Output;

    /// The actual mapping operation.
    fn apply(&mut self, from: T) -> Self::Output;
}

/// Map all entries in a tuple to another type, dependent on the tail type.
pub trait Map<M> {
    /// The result of the mapping operation.
    type MapResult;

    /// Perform the mapping!
    fn map(self, mapper: M) -> Self::MapResult;
}

impl<Head, Tail, M> Map<M> for (Head, Tail)
where
    M: MappingFunctor<Head>,
    Tail: Map<M>,
{
    type MapResult = (M::Output, Tail::MapResult);

    fn map(self, mut mapper: M) -> Self::MapResult {
        let head = mapper.apply(self.0);
        (head, self.1.map(mapper))
    }
}

impl<M> Map<M> for () {
    type MapResult = ();

    fn map(self, _mapper: M) -> Self::MapResult {}
}

/// Iterate over a tuple, executing the given `expr` for each element.
#[macro_export]
#[allow(clippy::items_after_statements)]
macro_rules! tuple_for_each {
    ($fn_name:ident, $trait_name:path, $tuple_name:ident, $body:expr) => {
        #[allow(clippy::items_after_statements)]
        mod $fn_name {
            pub trait ForEach {
                fn for_each(&self);
            }

            impl ForEach for () {
                fn for_each(&self) {}
            }

            impl<Head, Tail> ForEach for (Head, Tail)
            where
                Head: $trait_name,
                Tail: tuple_list::TupleList + ForEach,
            {
                #[allow(clippy::redundant_closure_call)]
                fn for_each(&self) {
                    ($body)(&self.0);
                    self.1.for_each();
                }
            }
        }
        {
            use $fn_name::*;

            $tuple_name.for_each();
        };
    };
}

/// Iterate over a tuple, executing the given `expr` for each element, granting mut access.
#[macro_export]
macro_rules! tuple_for_each_mut {
    ($fn_name:ident, $trait_name:path, $tuple_name:ident, $body:expr) => {
        #[allow(clippy::items_after_statements)]
        mod $fn_name {
            pub trait ForEachMut {
                fn for_each_mut(&mut self);
            }

            impl ForEachMut for () {
                fn for_each_mut(&mut self) {}
            }

            impl<Head, Tail> ForEachMut for (Head, Tail)
            where
                Head: $trait_name,
                Tail: tuple_list::TupleList + ForEachMut,
            {
                #[allow(clippy::redundant_closure_call)]
                fn for_each_mut(&mut self) {
                    ($body)(&mut self.0);
                    self.1.for_each_mut();
                }
            }
        }
        {
            use $fn_name::*;

            $tuple_name.for_each_mut();
        };
    };
}

#[cfg(test)]
#[cfg(feature = "std")]
#[test]
#[allow(clippy::items_after_statements)]
pub fn test_macros() {
    let mut t = tuple_list!(1, "a");

    tuple_for_each!(f1, std::fmt::Display, t, |x| {
        log::info!("{x}");
    });

    tuple_for_each_mut!(f2, std::fmt::Display, t, |x| {
        log::info!("{x}");
    });
}

/*

// Define trait and implement it for several primitive types.
trait PlusOne {
    fn plus_one(&mut self);
}
impl PlusOne for i32    { fn plus_one(&mut self) { *self += 1; } }
impl PlusOne for String { fn plus_one(&mut self) { self.push('1'); } }

// Now we have to implement trait for an empty tuple,
// thus defining initial condition.
impl PlusOne for () {
    fn plus_one(&mut self) {}
}

// Now we can implement trait for a non-empty tuple list,
// thus defining recursion and supporting tuple lists of arbitrary length.
impl<Head, Tail> PlusOne for (Head, Tail) where
    Head: PlusOne,
    Tail: PlusOne + TupleList,
{
    fn plus_one(&mut self) {
        self.0.plus_one();
        self.1.plus_one();
    }
}

*/

#[cfg(test)]
mod test {
    use tuple_list::{tuple_list, tuple_list_type};

    #[cfg(feature = "alloc")]
    use crate::ownedref::OwnedMutSlice;
    use crate::tuples::{type_eq, Map, MappingFunctor};

    #[test]
    #[allow(unused_qualifications)] // for type name tests
    fn test_type_eq_simple() {
        // test eq
        assert!(type_eq::<u64, u64>());

        // test neq
        assert!(!type_eq::<u64, usize>());
    }

    #[test]
    #[cfg(feature = "alloc")]
    #[allow(unused_qualifications)] // for type name tests
    fn test_type_eq() {
        // An alias for equality testing
        type OwnedMutSliceAlias<'a> = OwnedMutSlice<'a, u8>;

        // A function for lifetime testing
        #[allow(clippy::extra_unused_lifetimes)]
        fn test_lifetimes<'a, 'b>() {
            assert!(type_eq::<OwnedMutSlice<'a, u8>, OwnedMutSlice<'b, u8>>());
            assert!(type_eq::<OwnedMutSlice<'static, u8>, OwnedMutSlice<'a, u8>>());
            assert!(type_eq::<OwnedMutSlice<'a, u8>, OwnedMutSlice<'b, u8>>());
            assert!(type_eq::<OwnedMutSlice<'a, u8>, OwnedMutSlice<'static, u8>>());
            assert!(!type_eq::<OwnedMutSlice<'a, u8>, OwnedMutSlice<'b, i8>>());
        }
        assert!(type_eq::<OwnedMutSlice<u8>, OwnedMutSliceAlias>());

        test_lifetimes();
        // test weirder lifetime things
        assert!(type_eq::<OwnedMutSlice<u8>, OwnedMutSlice<u8>>());
        assert!(!type_eq::<OwnedMutSlice<u8>, OwnedMutSlice<u32>>());

        assert!(type_eq::<
            OwnedMutSlice<u8>,
            crate::ownedref::OwnedMutSlice<u8>,
        >());
        assert!(!type_eq::<
            OwnedMutSlice<u8>,
            crate::ownedref::OwnedMutSlice<u32>,
        >());
    }

    #[test]
    fn test_mapper() {
        struct W<T>(T);
        struct MyMapper;

        impl<T> MappingFunctor<T> for MyMapper {
            type Output = W<T>;

            fn apply(&mut self, from: T) -> Self::Output {
                W(from)
            }
        }

        struct A;
        struct B;
        struct C;

        let orig = tuple_list!(A, B, C);
        let mapped = orig.map(MyMapper);

        // this won't compile if the mapped type is not correct
        #[allow(clippy::no_effect_underscore_binding)]
        let _type_assert: tuple_list_type!(W<A>, W<B>, W<C>) = mapped;
    }
}