1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
use std::time::Duration;
use tokio::sync::Mutex;
use tokio::time::{interval, Interval};
/// [`RateLimiter`] is a tool which can control the rate at which processing happens.
///
/// # Examples
///
/// ```
/// use std::time::{Duration, Instant};
/// use lib_wc::sync::RateLimiter;
/// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
///
/// static PERIOD: Duration = Duration::from_millis(10);
/// static COUNT: AtomicUsize = AtomicUsize::new(0);
///
/// async fn do_work() { COUNT.fetch_add(1, SeqCst); }
///
/// #[tokio::main]
/// async fn main() {
/// let rate_limiter = RateLimiter::new(PERIOD);
/// let start = Instant::now();
///
/// for _ in 0..10 {
/// rate_limiter.throttle(|| do_work()).await;
/// }
///
/// // The first call to throttle should have returned immediately, but the remaining
/// // calls should have waited for the interval to tick.
/// assert!(start.elapsed().as_millis() > 89);
///
/// // All 10 calls to do_work should be finished.
/// assert_eq!(COUNT.load(SeqCst), 10);
/// }
pub struct RateLimiter {
/// The mutex that will be locked when the rate limiter is waiting for the interval to tick.
///
/// It's important to use a tokio::sync::Mutex here instead of a std::sync::Mutex. The reason is
/// that the tokio::sync::Mutex does not block & the MutexGuard is held across await points.
///
/// If you tried to use std::sync::Mutex instead, you would get a compiler error when
/// spawning tokio tasks because the MutexGuard would not be Send.
interval: Mutex<Interval>,
}
impl RateLimiter {
/// Creates a new rate limiter.
///
/// # Examples
///
/// ```
/// use tokio::sync::Mutex;
/// use anyhow::Result;
/// use std::time::Duration;
/// use lib_wc::sync::RateLimiter;
///
/// #[tokio::main]
/// async fn main() -> Result<()> {
/// RateLimiter::new(Duration::from_millis(10));
/// Ok(())
/// }
/// ```
pub fn new(period: Duration) -> Self {
Self {
interval: Mutex::new(interval(period)),
}
}
/// Throttles the execution of a function.
///
/// # Examples
///
/// ```
/// use lib_wc::sync::RateLimiter;
/// use anyhow::Result;
/// use std::sync::Arc;
///
/// async fn do_work() { /* some computation */ }
///
/// async fn do_throttle(limiter: Arc<RateLimiter>) {
/// limiter.throttle(|| do_work()).await
/// }
pub async fn throttle<Fut, F, T>(&self, f: F) -> T
where
Fut: std::future::Future<Output = T>,
F: FnOnce() -> Fut,
{
self.wait().await;
f().await
}
/// Waits for the interval to tick.
///
/// This is the building block for the throttle function. It works by allowing only one task to
/// access the interval at a time. The first task to access the interval will tick it and then
/// release the lock. The next task to access the interval will tick it and then release the
/// lock.
async fn wait(&self) {
let mut interval = self.interval.lock().await;
interval.tick().await;
}
}
#[cfg(test)]
mod tests {
use super::*;
use anyhow::Result;
use std::sync::Arc;
use std::time::Instant;
#[tokio::test]
async fn test_throttle_empty() -> Result<()> {
let rate_limiter = RateLimiter::new(Duration::from_millis(10));
let start = Instant::now();
for _ in 0..10 {
rate_limiter.throttle(|| async {}).await;
}
let end = start.elapsed().as_millis();
assert!(end >= 89);
Ok(())
}
#[tokio::test]
async fn test_throttle_fn() -> Result<()> {
let rate_limiter = RateLimiter::new(Duration::from_millis(10));
async fn hello() {
println!("Hello, world!")
}
let start = Instant::now();
for _ in 0..10 {
rate_limiter.throttle(hello).await;
}
let end = start.elapsed().as_millis();
assert!(end >= 89);
Ok(())
}
#[tokio::test]
async fn test_throttle_with_mutable_data() -> Result<()> {
let rate_limiter = Arc::new(RateLimiter::new(Duration::from_millis(10)));
let data = Arc::new(Mutex::new(0));
async fn hello(data: Arc<Mutex<i32>>) {
let mut data = data.lock().await;
*data += 1;
}
let start = Instant::now();
let futs = (0..10).map(|_| {
let data = data.clone();
let rate_limiter = rate_limiter.clone();
tokio::spawn(async move {
rate_limiter.throttle(|| hello(data.clone())).await;
Ok::<(), anyhow::Error>(())
})
});
for fut in futs {
fut.await??;
}
let end = start.elapsed().as_millis();
let data = data.lock().await;
assert!(end >= 89);
assert_eq!(*data, 10);
Ok(())
}
#[tokio::test]
async fn test_throttle_fn_mut_with_mutable_data_2() -> Result<()> {
let data = Arc::new(Mutex::new(Data { data: 0 }));
let rate_limiter = Arc::new(RateLimiter::new(Duration::from_millis(10)));
struct Data {
data: i32,
}
impl Data {
async fn increment(&mut self) {
self.data += 1;
}
}
async fn hello(data: Arc<Mutex<Data>>) {
let mut data = data.lock().await;
data.increment().await;
}
let start = Instant::now();
let futs = (0..10).map(|_| {
let data = data.clone();
let rate_limiter = rate_limiter.clone();
tokio::spawn(async move {
rate_limiter.throttle(|| hello(data.clone())).await;
Ok::<(), anyhow::Error>(())
})
});
for fut in futs {
fut.await??;
}
let end = start.elapsed().as_millis();
let data = data.lock().await;
assert!(end >= 89);
assert_eq!(data.data, 10);
Ok(())
}
}