1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
use core::*;
use geometry::{Matrix, Vector, norms::l1};
use std::{collections::HashMap, mem::replace};

#[derive(Clone, Serialize, Deserialize)]
pub struct VectorFunction {
    pub weights: Matrix<f64>,
}

impl VectorFunction {
    pub fn new(n_features: usize, n_outputs: usize) -> Self {
        VectorFunction {
            weights: Matrix::zeros((n_features, n_outputs)),
        }
    }

    fn append_weight_rows(&mut self, new_rows: Vec<Vec<f64>>) {
        let n_cols = self.weights.cols();
        let n_rows = self.weights.rows();
        let n_rows_new = new_rows.len();

        // Weight matrix stored in row-major format.
        let mut weights =
            unsafe { replace(&mut self.weights, Matrix::uninitialized((0, 0))).into_raw_vec() };

        weights.reserve_exact(n_rows_new);

        for row in new_rows {
            weights.extend(row);
        }

        self.weights = Matrix::from_shape_vec((n_rows + n_rows_new, n_cols), weights).unwrap();
    }
}

impl Approximator<Projection> for VectorFunction {
    type Value = Vector<f64>;

    fn evaluate(&self, p: &Projection) -> EvaluationResult<Vector<f64>> {
        Ok(match p {
            &Projection::Dense(ref dense) => self.weights.t().dot(dense),
            &Projection::Sparse(ref sparse) => (0..self.weights.cols())
                .map(|c| sparse
                    .iter()
                    .fold(0.0, |acc, idx| acc + self.weights[(*idx, c)])
                )
                .collect(),
        })
    }

    fn update(&mut self, p: &Projection, errors: Vector<f64>) -> UpdateResult<()> {
        Ok(match p {
            &Projection::Dense(ref dense) => {
                let scaled_errors = errors / l1(dense.as_slice().unwrap());
                let phi_matrix = dense.view().into_shape((dense.len(), 1)).unwrap();
                let error_matrix =
                    scaled_errors.view().into_shape((1, self.weights.cols())).unwrap();

                self.weights += &phi_matrix.dot(&error_matrix)
            }
            &Projection::Sparse(ref sparse) => for c in 0..self.weights.cols() {
                let mut col = self.weights.column_mut(c);
                let scaled_error = errors[c] / sparse.len() as f64;

                for idx in sparse {
                    col[*idx] += scaled_error
                }
            },
        })
    }

    fn adapt(&mut self, new_features: &HashMap<IndexT, IndexSet>) -> AdaptResult<usize> {
        let n_nfs = new_features.len();
        let n_outputs = self.weights.cols();

        let max_index = self.weights.len() + n_nfs - 1;

        let new_weights: Result<Vec<Vec<f64>>, _> = new_features
            .into_iter()
            .map(|(&i, idx)| {
                if i > max_index {
                    Err(AdaptError::Failed)
                } else {
                    Ok((0..n_outputs)
                        .map(|c| {
                            let c = self.weights.column(c);

                            idx.iter().fold(0.0, |acc, r| acc + c[*r])
                        })
                        .collect())
                }
            })
            .collect();

        match new_weights {
            Ok(new_weights) => {
                self.append_weight_rows(new_weights);

                Ok(n_nfs)
            }
            Err(err) => Err(err),
        }
    }
}

impl Parameterised for VectorFunction {
    fn weights(&self) -> Matrix<f64> {
        self.weights.clone()
    }
}

#[cfg(test)]
mod tests {
    extern crate seahash;

    use ::LFA;
    use approximators::VectorFunction;
    use basis::fixed::{Fourier, TileCoding};
    use core::Approximator;
    use geometry::Vector;
    use std::{collections::{BTreeSet, HashMap}, hash::BuildHasherDefault};

    type SHBuilder = BuildHasherDefault<seahash::SeaHasher>;

    #[test]
    fn test_sparse_update_eval() {
        let p = TileCoding::new(SHBuilder::default(), 4, 100);
        let mut f = LFA::vector_valued(p, 2);
        let input = vec![5.0];

        let _ = f.update(input.as_slice(), Vector::from_vec(vec![20.0, 50.0]));
        let out = f.evaluate(input.as_slice()).unwrap();

        assert!((out[0] - 20.0).abs() < 1e-6);
        assert!((out[1] - 50.0).abs() < 1e-6);
    }

    #[test]
    fn test_dense_update_eval() {
        let p = Fourier::new(3, vec![(0.0, 10.0)]);
        let mut f = LFA::vector_valued(p, 2);

        let input = vec![5.0];

        let _ = f.update(input.as_slice(), Vector::from_vec(vec![20.0, 50.0]));
        let out = f.evaluate(input.as_slice()).unwrap();

        assert!((out[0] - 20.0).abs() < 1e-6);
        assert!((out[1] - 50.0).abs() < 1e-6);
    }

    #[test]
    fn test_adapt() {
        let mut f = VectorFunction::new(100, 2);

        let mut new_features = HashMap::new();
        new_features.insert(100, {
            let mut idx = BTreeSet::new();

            idx.insert(10);
            idx.insert(90);

            idx
        });

        match f.adapt(&new_features) {
            Ok(n) => {
                assert_eq!(n, 1);
                assert_eq!(f.weights.rows(), 101);

                let c0 = f.weights.column(0);
                let c1 = f.weights.column(1);

                assert_eq!(c0[100], c0[10] / 2.0 + c0[90] / 2.0);
                assert_eq!(c1[100], c1[10] / 2.0 + c1[90] / 2.0);
            }
            Err(err) => panic!("VectorFunction::adapt failed with AdaptError::{:?}", err),
        }
    }
}