1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
use std::collections::HashMap;
use std::collections::HashSet;
use std::collections::VecDeque;
use std::fmt::Debug as DebugTrait;
use std::hash::Hash;
#[derive(Debug, Hash, Clone, Eq)]
pub struct RoseTreeNode<T>
where
T: Clone + DebugTrait + Eq + Hash,
{
pub parents: Vec<RoseTreeNode<T>>,
pub children: Vec<RoseTreeNode<T>>,
pub value: T,
}
impl<T> RoseTreeNode<T>
where
T: Clone + DebugTrait + Eq + Hash,
{
pub fn set_parents(&mut self, parents: Vec<RoseTreeNode<T>>) {
self.parents = parents;
}
pub fn set_children(&mut self, children: Vec<RoseTreeNode<T>>) {
self.children = children;
}
pub fn get_value(self) -> T {
return self.value;
}
}
impl<T> PartialEq for RoseTreeNode<T>
where
T: Eq + Clone + DebugTrait + Hash,
{
fn eq(&self, other: &Self) -> bool {
return self.value == other.value
&& self.parents == other.parents
&& self.children == other.children;
}
}
impl<T> RoseTreeNode<T>
where
T: Clone + DebugTrait + Eq + Hash,
{
pub fn new(value: T) -> RoseTreeNode<T> {
return RoseTreeNode {
parents: Default::default(),
children: Default::default(),
value,
};
}
pub fn parents_by_level(node: RoseTreeNode<T>) -> HashMap<i32, HashSet<T>> {
let mut level: i32 = 0;
if node.parents.is_empty() {
return Default::default();
}
let mut ps_by_level: HashMap<i32, HashSet<T>> = Default::default();
let mut deque_temp: VecDeque<RoseTreeNode<T>> = Default::default();
deque_temp.extend(node.parents);
while !deque_temp.is_empty() {
level = level - 1;
let parents: Vec<RoseTreeNode<T>> = deque_temp.drain(..).collect();
for mut parent in parents.into_iter() {
deque_temp.extend(parent.parents.drain(..));
let entry: &mut HashSet<_> = ps_by_level.entry(level).or_insert(Default::default());
entry.insert(parent.value);
}
}
return ps_by_level;
}
pub fn children_by_level(
node: RoseTreeNode<T>,
parents_by_level: &mut HashMap<i32, HashSet<T>>,
) -> HashMap<i32, HashSet<T>> {
let mut level: i32 = 0;
if node.children.is_empty() {
return Default::default();
}
let mut children_by_level: HashMap<i32, HashSet<T>> = Default::default();
let mut deque_temp: VecDeque<RoseTreeNode<T>> = Default::default();
deque_temp.extend(node.children);
while !deque_temp.is_empty() {
level = level + 1;
let children: Vec<RoseTreeNode<T>> = deque_temp.drain(..).collect();
for mut child in children.into_iter() {
let parents_by_level_from_current_child: HashMap<i32, HashSet<_>> =
RoseTreeNode::parents_by_level(child.clone());
child.parents = vec![];
for (parent_level, parents) in parents_by_level_from_current_child.into_iter() {
parents_by_level
.entry(level - parent_level.abs())
.or_insert(Default::default())
.extend(parents);
}
deque_temp.extend(child.children.drain(..));
let entry: &mut HashSet<_> = children_by_level.entry(level).or_insert(Default::default());
entry.insert(child.value);
}
}
return children_by_level;
}
pub fn nodes_by_level(node: RoseTreeNode<T>) -> HashMap<i32, HashSet<T>> {
let mut nodes_by_level: HashMap<i32, HashSet<_>> = Default::default();
let mut current_level_rows: HashSet<T> = Default::default();
current_level_rows.insert(node.value.clone());
nodes_by_level.insert(0, current_level_rows);
nodes_by_level.extend(RoseTreeNode::parents_by_level(node.clone()));
let children_by_level = RoseTreeNode::children_by_level(node.clone(), &mut nodes_by_level);
nodes_by_level.extend(children_by_level);
return nodes_by_level;
}
}
#[cfg(test)]
mod test {
use super::*;
mod parents_by_level {
use super::*;
use crate::common::macros::hashmap_literal;
#[test]
fn it_should_load_parents() {
let mut node = RoseTreeNode::new("level_0");
let mut parent_a = RoseTreeNode::new("level_1_parent_a");
let mut parent_b = RoseTreeNode::new("level_1_parent_b");
parent_a.set_parents(vec![RoseTreeNode::new("level_2_parent_a")]);
parent_b.set_children(vec![RoseTreeNode::new("level_1_child_b")]);
node.set_parents(vec![parent_a, parent_b.clone()]);
let parents_by_level = RoseTreeNode::parents_by_level(node);
let expected_structure: HashMap<i32, HashSet<_>> = hashmap_literal! {
-1 => vec!["level_1_parent_b", "level_1_parent_a"].into_iter().collect(),
-2 => vec!["level_2_parent_a"].into_iter().collect(),
};
assert_eq!(parents_by_level, expected_structure);
}
}
mod children_by_level {
use super::*;
mod given_empty_parents {
use super::*;
use crate::common::macros::hashmap_literal;
#[test]
fn it_should_load_children() {
let mut node = RoseTreeNode::new("level_0");
let mut child_a = RoseTreeNode::new("level_1_child_a");
let mut child_b = RoseTreeNode::new("level_1_child_b");
let mut level_2_child_a = RoseTreeNode::new("level_2_child_a");
let level_2_child_b = RoseTreeNode::new("level_2_child_b");
level_2_child_a.set_parents(vec![RoseTreeNode::new("level_1_parent_x")]);
child_a.set_children(vec![level_2_child_a.clone()]);
child_b.set_children(vec![level_2_child_b.clone()]);
child_b.set_parents(vec![RoseTreeNode::new("level_0_parent_b")]);
node.set_children(vec![child_a, child_b.clone()]);
let mut parents_by_level: HashMap<i32, HashSet<&str>> = Default::default();
let children_vec = RoseTreeNode::children_by_level(node, &mut parents_by_level);
let expected_children_structure = hashmap_literal! {
1 => vec!["level_1_child_a", "level_1_child_b"].into_iter().collect(),
2 => vec!["level_2_child_a", "level_2_child_b"].into_iter().collect(),
};
let expected_parents_structure = hashmap_literal! {
0 => vec!["level_0_parent_b"].into_iter().collect(),
1 => vec!["level_1_parent_x"].into_iter().collect()
};
assert_eq!(children_vec, expected_children_structure);
assert_eq!(parents_by_level, expected_parents_structure);
}
}
mod given_prefilled_parents {
use super::*;
use crate::common::macros::hashmap_literal;
#[test]
fn it_should_load_parents_into_existing_levels() {
let mut node = RoseTreeNode::new("level_0");
let mut child_a = RoseTreeNode::new("level_1_child_a");
let mut child_b = RoseTreeNode::new("level_1_child_b");
let mut parent_a = RoseTreeNode::new("level_0_parent_a");
parent_a.set_parents(vec![RoseTreeNode::new("level_1_parent_a")]);
child_a.set_parents(vec![parent_a.clone()]);
child_a.set_children(vec![RoseTreeNode::new("level_2_child_a")]);
child_b.set_parents(vec![RoseTreeNode::new("level_0_parent_b")]);
node.set_children(vec![child_a, child_b]);
let mut parents_by_level: HashMap<i32, HashSet<&str>> = hashmap_literal! {
-1 => vec!["level_1_parent_a"].into_iter().collect(),
-2 => vec![
"level_2_parent_a",
"level_2_parent_b"
].into_iter().collect()
};
let children_vec = RoseTreeNode::children_by_level(node, &mut parents_by_level);
let expected_children_structure = hashmap_literal! {
1 => vec!["level_1_child_a", "level_1_child_b"].into_iter().collect(),
2 => vec!["level_2_child_a"].into_iter().collect(),
};
let expected_parents_structure = hashmap_literal! {
0 => vec!["level_0_parent_a", "level_0_parent_b"].into_iter().collect(),
-1 => vec!["level_1_parent_a"].into_iter().collect(),
-2 => vec!["level_2_parent_a", "level_2_parent_b"].into_iter().collect()
};
assert_eq!(
children_vec, expected_children_structure,
"not equal left {:#?} and {:#?}",
children_vec, expected_children_structure
);
assert_eq!(parents_by_level, expected_parents_structure);
}
}
}
}