1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//! Fast lexical conversion routines with a C FFI for a no_std environment.
//!
//! # Getting Started
//!
//! lexical-core is a low-level, partially FFI-compatible API for
//! number-to-string and string-to-number conversions, without requiring
//! a system allocator. If you would like to use a convenient, high-level
//! API, please look at [lexical](https://crates.io/crates/lexical) instead.
//!
//! # Getting Started
//!
//! ```rust
//! extern crate lexical_core;
//!
//! // String to number using Rust slices.
//! // The argument is the byte string parsed.
//! let f = lexical_core::atof64(b"3.5").unwrap();   // 3.5
//! let i = lexical_core::atoi32(b"15").unwrap();    // 15
//!
//! // String to number using pointer ranges, for FFI-compatible code.
//! // The first argument is a pointer to the start of the parsed byte array,
//! // and the second argument is a pointer to 1-past-the-end. It will process
//! // bytes in the range [first, last).
//! unsafe {
//!     // Get an FFI-compatible range.
//!     let bytes = b"3.5";
//!     let first = bytes.as_ptr();
//!     let last = first.add(bytes.len());
//!     // Get our result and extract our value using C-compatible functions.
//!     let res = lexical_core::ffi::atof64(first, last);
//!     let f = lexical_core::ffi::f64_result_ok(res); // Aborts if res is not ok.
//! }
//!
//! // The ato* and ffi::ato* parsers are checked, they validate the
//! // input data is entirely correct, and stop parsing when invalid data
//! // is found, or upon numerical overflow.
//! let r = lexical_core::atoi8(b"256"); // Err(ErrorCode::Overflow.into())
//! let r = lexical_core::atoi8(b"1a5"); // Err(ErrorCode::InvalidDigit.into())
//!
//! // In order to extract and parse a number from a substring of the input
//! // data, use the ato*_partial and ffi::ato*_partial parsers.
//! // These functions return the parsed value and the number of processed
//! // digits, allowing you to extract and parse the number in a single pass.
//! let r = lexical_core::atoi8(b"3a5"); // Ok((3, 1))
//!
//! // Lexical-core includes FFI functions to properly extract data and handle
//! // errors during routines. All the following functions may be used in
//! // external libraries, include from C.
//!
//! unsafe {
//!     unsafe fn to_range(bytes: &'static [u8]) -> (*const u8, *const u8) {
//!         let first = bytes.as_ptr();
//!         let last = first.add(bytes.len());
//!         (first, last)
//!     }
//!
//!     // Ideally, everything works great.
//!     let (first, last) = to_range(b"15");
//!     let res = lexical_core::ffi::atoi8(first, last);
//!     if lexical_core::ffi::i8_result_is_ok(res) {
//!         let i = lexical_core::ffi::i8_result_ok(res);
//!         assert_eq!(i, 15);
//!     }
//!
//!     // However, it detects numeric overflow, returning an error with
//!     // an error code equal to `ErrorCode::Overflow`.
//!     let (first, last) = to_range(b"256");
//!     let res = lexical_core::ffi::atoi8(first, last);
//!     if lexical_core::ffi::i8_result_is_err(res) {
//!         let err = lexical_core::ffi::i8_result_err(res);
//!         assert_eq!(err.code, lexical_core::ffi::ErrorCode::Overflow);
//!     }
//!
//!     // Errors occurring prematurely terminating the parser due to invalid
//!     // digits return the index in the buffer where the invalid digit was
//!     // seen. This may useful in contexts like serde, which require numerical
//!     // parsers from complex data without having to extract a substring
//!     // containing only numeric data ahead of time.
//!     let (first, last) = to_range(b"15 45");
//!     let res = lexical_core::ffi::atoi8(first, last);
//!     if lexical_core::ffi::i8_result_is_err(res) {
//!         let err = lexical_core::ffi::i8_result_err(res);
//!         assert_eq!(err.code, lexical_core::ffi::ErrorCode::InvalidDigit);
//!         assert_eq!(err.index, 2);
//!     }
//!
//!     // Number to string using slices.
//!     // The first argument is the value, the second argument is the radix,
//!     // and the third argument is the buffer to write to.
//!     // The function returns a subslice of the original buffer, and will
//!     // always start at the same position (`buf.as_ptr() == slc.as_ptr()`).
//!     let mut buf = [b'0'; lexical_core::MAX_I64_SIZE];
//!     let slc = lexical_core::i64toa(15, &mut buf);
//!     assert_eq!(slc, b"15");
//! }
//!
//! // If an insufficiently long buffer is passed, the serializer will panic.
//! // PANICS
//! let mut buf = [b'0'; 1];
//! //let slc = lexical_core::i64toa(15, &mut buf);
//!
//! // In order to guarantee the buffer is long enough, always ensure there
//! // are at least `MAX_*_SIZE`, where * is the type name in upperase,
//! // IE, for `isize`, `MAX_ISIZE_SIZE`.
//! let mut buf = [b'0'; lexical_core::MAX_F64_SIZE];
//! let slc = lexical_core::f64toa(15.1, &mut buf);
//! assert_eq!(slc, b"15.1");
//!
//! // When the `radix` feature is enabled, for base10 floats, using `MAX_*_SIZE`
//! // may significantly overestimate the space required to format the number.
//! // Therefore, the `MAX_*_SIZE_BASE10` constants allow you to get a much
//! // tighter bound on the space required.
//! let mut buf = [b'0'; lexical_core::MAX_F64_SIZE_BASE10];
//! let slc = lexical_core::f64toa(15.1, &mut buf);
//! assert_eq!(slc, b"15.1");
//! ```

// FEATURES

// Require intrinsics in a no_std context.
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(all(not(feature = "std"), feature = "correct", feature = "radix"), feature(alloc))]
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
#![cfg_attr(all(not(test), not(feature = "std")), feature(lang_items))]

// DEPENDENCIES

#[macro_use]
extern crate cfg_if;

#[cfg(feature = "correct")]
#[allow(unused_imports)]    // Not used before 1.26.
#[macro_use]
extern crate static_assertions;

// Testing assertions for floating-point equality.
#[cfg(test)]
#[macro_use]
extern crate approx;

// Test against randomly-generated data.
#[cfg(all(test, feature = "property_tests"))]
#[macro_use]
extern crate quickcheck;

// Test against randomly-generated guided data.
#[cfg(all(test, feature = "std", feature = "property_tests"))]
#[macro_use]
extern crate proptest;

// Use vec if there is a system allocator, which we require only if
// we're using the correct and radix features.
#[cfg(all(not(feature = "std"), feature = "correct", feature = "radix"))]
#[cfg_attr(test, macro_use)]
extern crate alloc;

// Use stackvector for atof.
#[cfg(feature = "correct")]
#[macro_use]
extern crate stackvector;

// Ensure only one back-end is enabled.
#[cfg(all(feature = "grisu3", feature = "ryu"))]
compile_error!("Lexical only accepts one of the following backends: `grisu3` or `ryu`.");

// Import the back-end, if applicable.
cfg_if! {
if #[cfg(feature = "grisu3")] {
    extern crate dtoa;
} else if #[cfg(feature = "ryu")] {
    extern crate ryu;
}}  // cfg_if

/// Facade around the core features for name mangling.
pub(crate) mod lib {
#[cfg(feature = "std")]
pub(crate) use std::*;

#[cfg(not(feature = "std"))]
pub(crate) use core::*;

cfg_if! {
if #[cfg(all(feature = "correct", feature = "radix"))] {
    #[cfg(feature = "std")]
    pub(crate) use std::vec::Vec;

    #[cfg(not(feature = "std"))]
    pub(crate) use alloc::vec::Vec;
}}  // cfg_if

}   // lib

// PANIC

// Need to define a panic handler when we're not testing (panic handler
// then becomes "unwind" but there is no_std). This causes us to fail
// with doctests, so ensure `--tests` is passed to `cargo test` whenever
// we are in a  `no_std` context.
cfg_if! {
if #[cfg(all(not(test), not(feature = "std")))] {
    use lib::intrinsics;
    use lib::panic::PanicInfo;

    #[panic_handler]
    fn panic(_: &PanicInfo) -> ! {
        unsafe {
            intrinsics::abort();
        }
    }

    #[lang = "eh_personality"]
    extern fn eh_personality() {}
}}  // cfg_if

// API

// Hide implementation details
#[macro_use]
mod util;

mod atof;
mod atoi;
mod float;
mod ftoa;
mod itoa;

// Publicly expose the FFI module for documentation purposes.
pub mod ffi;

// Publicly re-export the low-level string-to-float functions.
pub use atof::*;

// Publicly re-export the low-level string-to-integer functions.
pub use atoi::*;

// Publicly re-export the low-level float-to-string functions.
pub use ftoa::*;

// Publicly re-export the low-level integer-to-string functions.
pub use itoa::*;

// Re-export configuration and utilities globally.
pub use util::*;