1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use std::cmp::{max, min};

use crate::util::*;

/// Returns the Levenshtein distance between source and target using Naive Recursion
///
/// **It is ill-advised to use this function because of it's terrible performance
/// characteristics.**
///
/// This implementation has a time complexity of O(3^n).
///
/// # Arguments
///
/// * `source` - The source sequence
/// * `target` - The target sequence
///
/// # Examples
///
/// ```
/// use levenshtein_diff as levenshtein;
///
/// let s1 = "SATURDAY";
/// let s2 = "SUNDAY";
/// let expected_leven = 3;

/// let leven_naive = levenshtein::levenshtein_naive(s1, s2);
/// assert_eq!(leven_naive, expected_leven);
/// ```
pub fn levenshtein_naive<T, U>(source: U, target: U) -> usize
where
    T: PartialEq,
    U: AsRef<[T]>,
{
    let source = source.as_ref();
    let target = target.as_ref();

    // indices
    let i: usize = source.len();
    let j: usize = target.len();

    // base case
    if min(i, j) == 0 {
        return max(i, j);
    }

    let k = if source[i - 1] == target[j - 1] { 0 } else { 1 };

    let delete = levenshtein_naive(&source[..i - 1], target) + 1;
    let insert = levenshtein_naive(source, &target[..j - 1]) + 1;
    let substitute = levenshtein_naive(&source[..i - 1], &target[..j - 1]) + k;

    min(min(insert, delete), substitute)
}

/// Returns the Levenshtein distance and the distance matrix between source and target using
/// dynamic programming with tabulation.
///
/// This implementation has a time complexity of O(n^2) and a space complexity of O(n^2).
///
/// # Arguments
///
/// * `source` - The source sequence
/// * `target` - The target sequence
///
/// # Examples
///
/// ```
/// use levenshtein_diff as levenshtein;
///
/// let s1 = "SATURDAY";
/// let s2 = "SUNDAY";
/// let expected_leven = 3;

/// let (leven_naive, _) = levenshtein::levenshtein_tabulation(s1, s2);
/// assert_eq!(leven_naive, expected_leven);
/// ```
pub fn levenshtein_tabulation<T, U>(i1: U, i2: U) -> (usize, DistanceMatrix)
where
    T: PartialEq + Clone,
    U: AsRef<[T]>,
{
    let i1 = i1.as_ref();
    let i2 = i2.as_ref();

    let m = i1.len();
    let n = i2.len();

    // table of distances
    let mut distances = get_distance_table(m, n);

    for i in 1..distances.len() {
        for j in 1..distances[0].len() {
            let k = if i1[i - 1] == i2[j - 1] { 0 } else { 1 };

            let delete = distances[i - 1][j] + 1;
            let insert = distances[i][j - 1] + 1;
            let substitute = distances[i - 1][j - 1] + k;

            distances[i][j] = min(min(delete, insert), substitute);
        }
    }

    (distances[m][n], distances)
}

/// Returns the Levenshtein distance and the distance matrix between source and target using
/// dynamic programming with memoization.
///
/// This implementation has a time complexity of O(n^2) and a space complexity of O(n^2).
///
/// # Arguments
///
/// * `source` - The source sequence
/// * `target` - The target sequence
///
/// # Examples
///
/// ```
/// use levenshtein_diff as levenshtein;
///
/// let s1 = "SATURDAY";
/// let s2 = "SUNDAY";
/// let expected_leven = 3;

/// let (leven_naive, _) = levenshtein::levenshtein_memoization(s1, s2);
/// assert_eq!(leven_naive, expected_leven);
/// ```
pub fn levenshtein_memoization<T, U>(i1: U, i2: U) -> (usize, DistanceMatrix)
where
    T: PartialEq,
    U: AsRef<[T]>,
{
    fn levenshtein_memoization_helper<T>(
        i1: &[T],
        i2: &[T],
        i: usize,
        j: usize,
        distances: &mut DistanceMatrix,
    ) -> usize
    where
        T: PartialEq,
    {
        // check the cache first
        if distances[i][j] < usize::MAX {
            return distances[i][j];
        }

        // base case
        if min(i1[..i].len(), i2[..j].len()) == 0 {
            return max(i1[..i].len(), i2[..j].len());
        }

        // couldn't find the value, time to recursively calculate it

        let k = if i1[i - 1] == i2[j - 1] { 0 } else { 1 };

        let delete = levenshtein_memoization_helper(i1, i2, i - 1, j, distances) + 1;
        let insert = levenshtein_memoization_helper(i1, i2, i, j - 1, distances) + 1;
        let substitute = levenshtein_memoization_helper(i1, i2, i - 1, j - 1, distances) + k;

        let distance = min(min(delete, insert), substitute);

        // update the cache
        distances[i][j] = distance;

        distance
    }

    let i1 = i1.as_ref();
    let i2 = i2.as_ref();

    let m = i1.len();
    let n = i2.len();

    let mut distances = get_distance_table(m, n);

    let distance = levenshtein_memoization_helper(i1, i2, m, n, &mut distances);

    (distance, distances)
}

#[cfg(test)]
mod tests {
    use crate::distance::*;

    #[test]
    fn levenshtein_naive_test() {
        let s1 = String::from("LAWN");
        let s2 = String::from("FFLAWANN");
        let expected_leven = 4;

        let leven_naive = levenshtein_naive(s1, s2);

        assert_eq!(leven_naive, expected_leven);
    }

    #[test]
    fn levenshtein_memoization_test() {
        let s1 = String::from("LAWN");
        let s2 = String::from("FFLAWANN");
        let expected_leven = 4;

        let (leven_memo, _) = levenshtein_memoization(s1, s2);

        assert_eq!(leven_memo, expected_leven);
    }

    #[test]
    fn levenshtein_tabulation_test() {
        let s1 = String::from("LAWN");
        let s2 = String::from("FFLAWANN");
        let expected_leven = 4;

        let (leven_tab, _) = levenshtein_tabulation(s1, s2);

        assert_eq!(leven_tab, expected_leven);
    }
}