[][src]Struct levenberg_marquardt::LevenbergMarquardt

pub struct LevenbergMarquardt<F> { /* fields omitted */ }

Levenberg-Marquardt optimization algorithm.

See the module documentation for a usage example.

The runtime and termination behavior can be controlled by various hyperparameters.

Implementations

impl<F: RealField + Float> LevenbergMarquardt<F>[src]

pub fn new() -> Self[src]

pub fn with_ftol(self, ftol: F) -> Self[src]

Set the relative error desired in the objective function $f$.

Termination occurs when both the actual and predicted relative reductions for $f$ are at most ftol.

Panics

Panics if $\mathtt{ftol} < 0$.

pub fn with_xtol(self, xtol: F) -> Self[src]

Set relative error between last two approximations.

Termination occurs when the relative error between two consecutive iterates is at most xtol.

Panics

Panics if $\mathtt{xtol} < 0$.

pub fn with_gtol(self, gtol: F) -> Self[src]

Set orthogonality desired between the residual vector and its derivative.

Termination occurs when the cosine of the angle between the residual vector $\vec{r}$ and any column of the Jacobian $\mathbf{J}$ is at most gtol in absolute value.

With other words, the algorithm will terminate if

  \cos\bigl(\sphericalangle (\mathbf{J}\vec{e}_i, \vec{r})\bigr) =
  \frac{|(\mathbf{J}^\top \vec{r})_i|}{\|\mathbf{J}\vec{e}_i\|\|\vec{r}\|} \leq \texttt{gtol}
  \quad\text{for all }i=1,\ldots,n.

This is based on the fact that those vectors are orthognal near the optimum (gradient is zero). The angle check is scale invariant, whereas checking that $\nabla f(\vec{x})\approx \vec{0}$ is not.

Panics

Panics if $\mathtt{gtol} < 0$.

pub fn with_tol(self, tol: F) -> Self[src]

Shortcut to set tol as in MINPACK LMDER1.

Sets ftol = xtol = tol and gtol = 0.

Panics

Panics if $\mathtt{tol} \leq 0$.

pub fn with_stepbound(self, stepbound: F) -> Self[src]

Set factor for the initial step bound.

This bound is set to $\mathtt{stepbound}\cdot\|\mathbf{D}\vec{x}\|$ if nonzero, or else to stepbound itself. In most cases stepbound should lie in the interval $[0.1,100]$.

Panics

Panics if $\mathtt{stepbound} \leq 0$.

pub fn with_patience(self, patience: usize) -> Self[src]

Set factor for the maximal number of function evaluations.

The maximal number of function evaluations is set to $\texttt{patience}\cdot(n + 1)$.

Panics

Panics if $\mathtt{patience} \leq 0$.

pub fn with_scale_diag(self, scale_diag: bool) -> Self[src]

Enable or disable whether the variables will be rescaled internally.

pub fn minimize<N, M, O>(&self, target: O) -> (O, MinimizationReport<F>) where
    N: Dim,
    M: DimMin<N> + DimMax<N>,
    O: LeastSquaresProblem<F, M, N>,
    DefaultAllocator: Allocator<F, N> + Reallocator<F, M, N, DimMaximum<M, N>, N> + Allocator<usize, N>, 
[src]

Try to solve the given least squares problem.

The paramters of the problem which are set when this function is called are used as the initial guess for $\vec{x}$.

Trait Implementations

impl<F: Clone> Clone for LevenbergMarquardt<F>[src]

impl<F: Copy> Copy for LevenbergMarquardt<F>[src]

impl<F: Debug> Debug for LevenbergMarquardt<F>[src]

impl<F: RealField + Float> Default for LevenbergMarquardt<F>[src]

impl<F: Eq> Eq for LevenbergMarquardt<F>[src]

impl<F: PartialEq> PartialEq<LevenbergMarquardt<F>> for LevenbergMarquardt<F>[src]

impl<F> StructuralEq for LevenbergMarquardt<F>[src]

impl<F> StructuralPartialEq for LevenbergMarquardt<F>[src]

Auto Trait Implementations

impl<F> RefUnwindSafe for LevenbergMarquardt<F> where
    F: RefUnwindSafe

impl<F> Send for LevenbergMarquardt<F> where
    F: Send

impl<F> Sync for LevenbergMarquardt<F> where
    F: Sync

impl<F> Unpin for LevenbergMarquardt<F> where
    F: Unpin

impl<F> UnwindSafe for LevenbergMarquardt<F> where
    F: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<T> Scalar for T where
    T: PartialEq<T> + Copy + Any + Debug
[src]

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,