lethe_core_rust/
hyde.rs

1use async_trait::async_trait;
2use crate::error::{Result, LetheError};
3use crate::types::EmbeddingVector;
4use crate::embeddings::EmbeddingService;
5use serde::{Deserialize, Serialize};
6use std::sync::Arc;
7
8/// HyDE (Hypothetical Document Embeddings) configuration
9#[derive(Debug, Clone, Serialize, Deserialize)]
10pub struct HydeConfig {
11    /// Number of hypothetical documents to generate
12    pub num_documents: usize,
13    /// Temperature for document generation
14    pub temperature: f32,
15    /// Maximum tokens for generated documents
16    pub max_tokens: usize,
17    /// Whether to combine hypothetical with original query
18    pub combine_with_query: bool,
19}
20
21impl Default for HydeConfig {
22    fn default() -> Self {
23        Self {
24            num_documents: 3,
25            temperature: 0.7,
26            max_tokens: 256,
27            combine_with_query: true,
28        }
29    }
30}
31
32/// Hypothetical document generated by LLM
33#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct HypotheticalDocument {
35    pub id: String,
36    pub text: String,
37    pub embedding: Option<EmbeddingVector>,
38    pub confidence: f32,
39}
40
41/// HyDE query expansion result
42#[derive(Debug, Clone, Serialize, Deserialize)]
43pub struct HydeExpansion {
44    pub original_query: String,
45    pub hypothetical_documents: Vec<HypotheticalDocument>,
46    pub combined_embedding: Option<EmbeddingVector>,
47    pub expansion_quality: f32,
48}
49
50/// Trait for LLM services that can generate hypothetical documents
51#[async_trait]
52pub trait LlmService: Send + Sync {
53    async fn generate_text(&self, prompt: &str, config: &HydeConfig) -> Result<Vec<String>>;
54}
55
56/// HyDE service for query expansion using hypothetical documents
57pub struct HydeService {
58    llm_service: Arc<dyn LlmService>,
59    embedding_service: Arc<dyn EmbeddingService>,
60    config: HydeConfig,
61}
62
63impl HydeService {
64    pub fn new(
65        llm_service: Arc<dyn LlmService>,
66        embedding_service: Arc<dyn EmbeddingService>,
67        config: HydeConfig,
68    ) -> Self {
69        Self {
70            llm_service,
71            embedding_service,
72            config,
73        }
74    }
75
76    /// Expand a query using HyDE methodology
77    pub async fn expand_query(&self, query: &str) -> Result<HydeExpansion> {
78        // Generate hypothetical documents
79        let hypothetical_texts = self.generate_hypothetical_documents(query).await?;
80        
81        // Create hypothetical document objects
82        let mut hypothetical_documents = Vec::new();
83        for (i, text) in hypothetical_texts.into_iter().enumerate() {
84            let id = format!("hyde_{}", i);
85            let embedding = self.embedding_service.embed(&[text.clone()]).await?;
86            let embedding = embedding.into_iter().next().unwrap();
87            let confidence = self.calculate_confidence(&text, query);
88            
89            hypothetical_documents.push(HypotheticalDocument {
90                id,
91                text,
92                embedding: Some(embedding),
93                confidence,
94            });
95        }
96
97        // Generate combined embedding
98        let combined_embedding = if self.config.combine_with_query {
99            Some(self.create_combined_embedding(query, &hypothetical_documents).await?)
100        } else {
101            None
102        };
103
104        // Calculate expansion quality
105        let expansion_quality = self.calculate_expansion_quality(&hypothetical_documents);
106
107        Ok(HydeExpansion {
108            original_query: query.to_string(),
109            hypothetical_documents,
110            combined_embedding,
111            expansion_quality,
112        })
113    }
114
115    /// Generate hypothetical documents for the given query
116    async fn generate_hypothetical_documents(&self, query: &str) -> Result<Vec<String>> {
117        let prompt = self.build_hyde_prompt(query);
118        self.llm_service.generate_text(&prompt, &self.config).await
119    }
120
121    /// Build the prompt for generating hypothetical documents
122    fn build_hyde_prompt(&self, query: &str) -> String {
123        format!(
124            r#"Given the following query, write {} high-quality, detailed document passages that would contain the answer to this query. Each passage should be informative, well-structured, and directly relevant to the query.
125
126Query: {query}
127
128Generate {num_docs} hypothetical document passages:
129
1301."#,
131            self.config.num_documents,
132            query = query,
133            num_docs = self.config.num_documents
134        )
135    }
136
137    /// Calculate confidence score for a hypothetical document
138    fn calculate_confidence(&self, document: &str, query: &str) -> f32 {
139        // Simple confidence calculation based on text overlap and quality
140        let query_lower = query.to_lowercase();
141        let query_words: std::collections::HashSet<&str> = query_lower
142            .split_whitespace()
143            .collect();
144        
145        let doc_lower = document.to_lowercase();
146        let doc_words: std::collections::HashSet<&str> = doc_lower
147            .split_whitespace()
148            .collect();
149
150        let overlap = query_words.intersection(&doc_words).count();
151        let total_query_words = query_words.len();
152        
153        if total_query_words == 0 {
154            return 0.0;
155        }
156
157        let overlap_score = overlap as f32 / total_query_words as f32;
158        
159        // Factor in document length (longer documents tend to be more detailed)
160        let length_score = (document.len() as f32 / 500.0).min(1.0);
161        
162        // Combine scores
163        (overlap_score * 0.6 + length_score * 0.4).min(1.0)
164    }
165
166    /// Create a combined embedding from query and hypothetical documents
167    async fn create_combined_embedding(
168        &self,
169        query: &str,
170        hypothetical_documents: &[HypotheticalDocument],
171    ) -> Result<EmbeddingVector> {
172        // Get query embedding
173        let query_embedding = self.embedding_service.embed(&[query.to_string()]).await?;
174        let query_embedding = query_embedding.into_iter().next().unwrap();
175        
176        // Collect all embeddings with weights
177        let mut weighted_embeddings = Vec::new();
178        
179        // Add query embedding with weight
180        weighted_embeddings.push((query_embedding, 1.0));
181        
182        // Add hypothetical document embeddings with confidence weights
183        for doc in hypothetical_documents {
184            if let Some(ref embedding) = doc.embedding {
185                weighted_embeddings.push((embedding.clone(), doc.confidence));
186            }
187        }
188
189        // Calculate weighted average
190        self.calculate_weighted_average(&weighted_embeddings)
191    }
192
193    /// Calculate weighted average of embeddings
194    fn calculate_weighted_average(&self, embeddings: &[(EmbeddingVector, f32)]) -> Result<EmbeddingVector> {
195        if embeddings.is_empty() {
196            return Err(LetheError::validation("embeddings", "No embeddings to average"));
197        }
198
199        let dimension = embeddings[0].0.data.len();
200        let mut result = vec![0.0; dimension];
201        let mut total_weight = 0.0;
202
203        for (embedding, weight) in embeddings {
204            if embedding.data.len() != dimension {
205                return Err(LetheError::validation("dimension", "Embedding dimension mismatch"));
206            }
207
208            for (i, &value) in embedding.data.iter().enumerate() {
209                result[i] += value * weight;
210            }
211            total_weight += weight;
212        }
213
214        // Normalize by total weight
215        if total_weight > 0.0 {
216            for value in &mut result {
217                *value /= total_weight;
218            }
219        }
220
221        Ok(EmbeddingVector {
222            data: result,
223            dimension,
224        })
225    }
226
227    /// Calculate the overall quality of the expansion
228    fn calculate_expansion_quality(&self, hypothetical_documents: &[HypotheticalDocument]) -> f32 {
229        if hypothetical_documents.is_empty() {
230            return 0.0;
231        }
232
233        // Average confidence of hypothetical documents
234        let avg_confidence: f32 = hypothetical_documents
235            .iter()
236            .map(|doc| doc.confidence)
237            .sum::<f32>() / hypothetical_documents.len() as f32;
238
239        // Factor in diversity (simple measure: average text length variance)
240        let lengths: Vec<f32> = hypothetical_documents
241            .iter()
242            .map(|doc| doc.text.len() as f32)
243            .collect();
244        
245        let avg_length = lengths.iter().sum::<f32>() / lengths.len() as f32;
246        let variance = lengths
247            .iter()
248            .map(|&len| (len - avg_length).powi(2))
249            .sum::<f32>() / lengths.len() as f32;
250        
251        let diversity_score = (variance / avg_length).min(1.0);
252
253        // Combine metrics
254        avg_confidence * 0.8 + diversity_score * 0.2
255    }
256
257    /// Get the best hypothetical documents based on confidence
258    pub fn get_best_documents<'a>(&self, expansion: &'a HydeExpansion, limit: usize) -> Vec<&'a HypotheticalDocument> {
259        let mut documents = expansion.hypothetical_documents.iter().collect::<Vec<_>>();
260        documents.sort_by(|a, b| b.confidence.partial_cmp(&a.confidence).unwrap_or(std::cmp::Ordering::Equal));
261        documents.into_iter().take(limit).collect()
262    }
263}
264
265/// Mock LLM service for testing
266#[cfg(test)]
267pub struct MockLlmService {
268    responses: std::collections::HashMap<String, Vec<String>>,
269}
270
271#[cfg(test)]
272impl MockLlmService {
273    pub fn new() -> Self {
274        Self {
275            responses: std::collections::HashMap::new(),
276        }
277    }
278
279    pub fn add_response(&mut self, prompt: String, responses: Vec<String>) {
280        self.responses.insert(prompt, responses);
281    }
282}
283
284#[cfg(test)]
285#[async_trait]
286impl LlmService for MockLlmService {
287    async fn generate_text(&self, prompt: &str, _config: &HydeConfig) -> Result<Vec<String>> {
288        // For testing, generate simple responses based on the query
289        if prompt.contains("machine learning") {
290            Ok(vec![
291                "Machine learning is a subset of artificial intelligence that enables computers to learn and make decisions from data without explicit programming.".to_string(),
292                "Modern machine learning algorithms include deep learning neural networks, random forests, and support vector machines.".to_string(),
293                "Applications of machine learning span computer vision, natural language processing, and predictive analytics.".to_string(),
294            ])
295        } else {
296            Ok(vec![
297                "This is a hypothetical document about the query topic.".to_string(),
298                "Another relevant document with detailed information.".to_string(),
299                "A third document providing additional context.".to_string(),
300            ])
301        }
302    }
303}
304
305#[cfg(test)]
306mod tests {
307    use super::*;
308    use crate::embeddings::FallbackEmbeddingService;
309
310    #[tokio::test]
311    async fn test_hyde_expansion() {
312        let llm_service = Arc::new(MockLlmService::new());
313        let embedding_service = Arc::new(FallbackEmbeddingService::new(384));
314        let config = HydeConfig::default();
315        
316        let hyde_service = HydeService::new(llm_service, embedding_service, config);
317        
318        let expansion = hyde_service.expand_query("What is machine learning?").await.unwrap();
319        
320        assert_eq!(expansion.original_query, "What is machine learning?");
321        assert_eq!(expansion.hypothetical_documents.len(), 3);
322        assert!(expansion.expansion_quality > 0.0);
323        
324        for doc in &expansion.hypothetical_documents {
325            assert!(!doc.text.is_empty());
326            assert!(doc.confidence >= 0.0 && doc.confidence <= 1.0);
327            assert!(doc.embedding.is_some());
328        }
329    }
330
331    #[test]
332    fn test_confidence_calculation() {
333        let llm_service = Arc::new(MockLlmService::new());
334        let embedding_service = Arc::new(FallbackEmbeddingService::new(384));
335        let config = HydeConfig::default();
336        
337        let hyde_service = HydeService::new(llm_service, embedding_service, config);
338        
339        let query = "machine learning algorithms";
340        let document = "Machine learning algorithms are used to build predictive models and analyze data patterns.";
341        
342        let confidence = hyde_service.calculate_confidence(document, query);
343        assert!(confidence > 0.0 && confidence <= 1.0);
344    }
345
346    #[test]
347    fn test_weighted_average_embeddings() {
348        let llm_service = Arc::new(MockLlmService::new());
349        let embedding_service = Arc::new(FallbackEmbeddingService::new(384));
350        let config = HydeConfig::default();
351        
352        let hyde_service = HydeService::new(llm_service, embedding_service, config);
353        
354        let embeddings = vec![
355            (EmbeddingVector { data: vec![1.0, 0.0, 0.0], dimension: 3 }, 1.0),
356            (EmbeddingVector { data: vec![0.0, 1.0, 0.0], dimension: 3 }, 1.0),
357        ];
358        
359        let result = hyde_service.calculate_weighted_average(&embeddings).unwrap();
360        assert_eq!(result.data, vec![0.5, 0.5, 0.0]);
361        assert_eq!(result.dimension, 3);
362    }
363
364    #[test]
365    fn test_best_documents_selection() {
366        let expansion = HydeExpansion {
367            original_query: "test".to_string(),
368            hypothetical_documents: vec![
369                HypotheticalDocument {
370                    id: "1".to_string(),
371                    text: "doc1".to_string(),
372                    embedding: None,
373                    confidence: 0.9,
374                },
375                HypotheticalDocument {
376                    id: "2".to_string(),
377                    text: "doc2".to_string(),
378                    embedding: None,
379                    confidence: 0.7,
380                },
381                HypotheticalDocument {
382                    id: "3".to_string(),
383                    text: "doc3".to_string(),
384                    embedding: None,
385                    confidence: 0.8,
386                },
387            ],
388            combined_embedding: None,
389            expansion_quality: 0.8,
390        };
391
392        let llm_service = Arc::new(MockLlmService::new());
393        let embedding_service = Arc::new(FallbackEmbeddingService::new(384));
394        let config = HydeConfig::default();
395        
396        let hyde_service = HydeService::new(llm_service, embedding_service, config);
397        
398        let best = hyde_service.get_best_documents(&expansion, 2);
399        assert_eq!(best.len(), 2);
400        assert_eq!(best[0].confidence, 0.9);
401        assert_eq!(best[1].confidence, 0.8);
402    }
403}