1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
//! Wrapping of Rapiers colliders to be used with Let Engine and Glam.

use super::VHACDParameters;
use crate::{objects::Data, Transform};
use glam::Vec2;
use rapier2d::prelude::*;

#[derive(Clone)]
pub struct Collider(pub rapier2d::geometry::Collider);

impl Collider {
    /// Is this collider a sensor?
    pub fn is_sensor(&self) -> bool {
        self.0.is_sensor()
    }

    /// Sets whether or not this is a sensor collider.
    pub fn set_sensor(&mut self, is_sensor: bool) {
        self.0.set_sensor(is_sensor)
    }

    /// The friction coefficient of this collider.
    pub fn friction(&self) -> Real {
        self.0.friction()
    }

    /// Sets the friction coefficient of this collider.
    pub fn set_friction(&mut self, coefficient: Real) {
        self.0.set_friction(coefficient)
    }

    /// The combine rule used by this collider to combine its friction
    /// coefficient with the friction coefficient of the other collider it
    /// is in contact with.
    pub fn friction_combine_rule(&self) -> CoefficientCombineRule {
        self.0.friction_combine_rule()
    }

    /// Sets the combine rule used by this collider to combine its friction
    /// coefficient with the friction coefficient of the other collider it
    /// is in contact with.
    pub fn set_friction_combine_rule(&mut self, rule: CoefficientCombineRule) {
        self.0.set_friction_combine_rule(rule)
    }

    /// The restitution coefficient of this collider.
    pub fn restitution(&self) -> Real {
        self.0.restitution()
    }

    /// Sets the restitution coefficient of this collider.
    pub fn set_restitution(&mut self, coefficient: Real) {
        self.0.set_restitution(coefficient)
    }

    /// The combine rule used by this collider to combine its restitution
    /// coefficient with the restitution coefficient of the other collider it
    /// is in contact with.
    pub fn restitution_combine_rule(&self) -> CoefficientCombineRule {
        self.0.restitution_combine_rule()
    }

    /// Sets the combine rule used by this collider to combine its restitution
    /// coefficient with the restitution coefficient of the other collider it
    /// is in contact with.
    pub fn set_restitution_combine_rule(&mut self, rule: CoefficientCombineRule) {
        self.0.set_restitution_combine_rule(rule)
    }

    /// Sets the total force magnitude beyond which a contact force event can be emitted.
    pub fn set_contact_force_event_threshold(&mut self, threshold: Real) {
        self.0.set_contact_force_event_threshold(threshold)
    }

    /// Is this collider enabled?
    pub fn is_enabled(&self) -> bool {
        self.0.is_enabled()
    }

    /// Sets whether or not this collider is enabled.
    pub fn set_enabled(&mut self, enabled: bool) {
        self.0.set_enabled(enabled)
    }

    /// The volume (or surface in 2D) of this collider.
    pub fn volume(&self) -> Real {
        self.0.volume()
    }

    /// The density of this collider.
    pub fn density(&self) -> Real {
        self.0.density()
    }

    /// The mass of this collider.
    pub fn mass(&self) -> Real {
        self.0.mass()
    }

    /// Sets the uniform density of this collider.
    pub fn set_density(&mut self, density: Real) {
        self.0.set_density(density)
    }

    /// Sets the mass of this collider.
    pub fn set_mass(&mut self, mass: Real) {
        self.0.set_mass(mass)
    }

    /// The total force magnitude beyond which a contact force event can be emitted.
    pub fn contact_force_event_threshold(&self) -> Real {
        self.0.contact_force_event_threshold()
    }
}

pub struct ColliderBuilder {
    pub shape: Shape,
    pub mass_properties: ColliderMassProps,
    pub friction: Real,
    pub friction_combine_rule: CoefficientCombineRule,
    pub restitution: Real,
    pub restitution_combine_rule: CoefficientCombineRule,
    pub transform: Transform,
    pub is_sensor: bool,
    pub active_collision_types: ActiveCollisionTypes,
    pub active_hooks: ActiveHooks,
    pub active_events: ActiveEvents,
    pub collision_groups: InteractionGroups,
    pub solver_groups: InteractionGroups,
    pub enabled: bool,
    pub contact_force_event_threshold: Real,
}

impl ColliderBuilder {
    /// Initialize a new collider builder with the given shape.
    pub fn new(shape: Shape) -> Self {
        Self {
            shape,
            mass_properties: ColliderMassProps::default(),
            friction: 0.5,
            friction_combine_rule: CoefficientCombineRule::Average,
            restitution: 0.0,
            restitution_combine_rule: CoefficientCombineRule::Average,
            transform: Transform::default(),
            is_sensor: false,
            active_collision_types: ActiveCollisionTypes::default(),
            active_hooks: ActiveHooks::empty(),
            active_events: ActiveEvents::empty(),
            collision_groups: InteractionGroups::all(),
            solver_groups: InteractionGroups::all(),
            enabled: true,
            contact_force_event_threshold: 0.0,
        }
    }

    pub fn build(self) -> Collider {
        Collider(
            rapier2d::geometry::ColliderBuilder {
                shape: self.shape.0,
                mass_properties: self.mass_properties,
                friction: self.friction,
                friction_combine_rule: self.friction_combine_rule,
                restitution: self.restitution,
                restitution_combine_rule: self.restitution_combine_rule,
                is_sensor: self.is_sensor,
                active_collision_types: self.active_collision_types,
                active_hooks: self.active_hooks,
                active_events: self.active_events,
                collision_groups: self.collision_groups,
                solver_groups: self.solver_groups,
                enabled: self.enabled,
                contact_force_event_threshold: self.contact_force_event_threshold,
                user_data: 0,
                position: self.transform.into(),
            }
            .build(),
        )
    }

    /// Initialize a new collider builder with a compound shape.
    pub fn compound(shapes: Vec<(Transform, Shape)>) -> Self {
        Self::new(Shape::compound(shapes))
    }

    /// Initialize a new collider builder with a circle shape defined by its radius.
    pub fn circle(radius: Real) -> Self {
        Self::new(Shape::circle(radius))
    }

    /// Initialize a new collider builder with a cuboid shape defined by its half-extents.
    pub fn square(hx: Real, hy: Real) -> Self {
        Self::new(Shape::square(hx, hy))
    }

    /// Initialize a new collider builder with a round cuboid shape defined by its half-extents
    /// and border radius.
    pub fn rounded_square(hx: Real, hy: Real, border_radius: Real) -> Self {
        Self::new(Shape::rounded_square(hx, hy, border_radius))
    }

    /// Initialize a capsule collider from its endpoints and radius.
    pub fn capsule(a: Vec2, b: Vec2, radius: Real) -> Self {
        Self::new(Shape::capsule(a, b, radius))
    }

    /// Initialize a new collider builder with a capsule shape aligned with the `x` axis.
    pub fn capsule_x(half_height: Real, radius: Real) -> Self {
        Self::new(Shape::capsule_x(half_height, radius))
    }

    /// Initialize a new collider builder with a capsule shape aligned with the `y` axis.
    pub fn capsule_y(half_height: Real, radius: Real) -> Self {
        Self::new(Shape::capsule_x(half_height, radius))
    }

    /// Initializes a collider builder with a segment shape.
    pub fn segment(a: Vec2, b: Vec2) -> Self {
        Self::new(Shape::segment(a, b))
    }

    /// Initializes a collider builder with a triangle shape.
    pub fn triangle(a: Vec2, b: Vec2, c: Vec2) -> Self {
        Self::new(Shape::triangle(a, b, c))
    }

    /// Initializes a collider builder with a triangle shape with round corners.
    pub fn round_triangle(a: Vec2, b: Vec2, c: Vec2, radius: Real) -> Self {
        Self::new(Shape::round_triangle(a, b, c, radius))
    }

    /// Initializes a collider builder with a polyline shape defined by its vertex and index buffers.
    pub fn polyline(vertices: Vec<Vec2>, indices: Option<Vec<[u32; 2]>>) -> Self {
        Self::new(Shape::polyline(vertices, indices))
    }

    /// Initializes a collider builder with a triangle mesh shape defined by its vertex and index buffers.
    pub fn trimesh(data: Data) -> Self {
        Self::new(Shape::trimesh(data))
    }

    /// Initializes a collider builder with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts.
    pub fn convex_decomposition(vertices: &[Vec2], indices: &[[u32; 2]]) -> Self {
        Self::new(Shape::convex_decomposition(vertices, indices))
    }

    /// Initializes a collider builder with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts dilated with round corners.
    pub fn round_convex_decomposition(
        vertices: &[Vec2],
        indices: &[[u32; 2]],
        radius: Real,
    ) -> Self {
        Self::new(Shape::round_convex_decomposition(vertices, indices, radius))
    }

    /// Initializes a collider builder with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts.
    pub fn convex_decomposition_with_params(
        vertices: &[Vec2],
        indices: &[[u32; 2]],
        params: &VHACDParameters,
    ) -> Self {
        Self::new(Shape::convex_decomposition_with_params(
            vertices, indices, params,
        ))
    }

    /// Initializes a collider builder with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts dilated with round corners.
    pub fn round_convex_decomposition_with_params(
        vertices: &[Vec2],
        indices: &[[u32; 2]],
        params: &VHACDParameters,
        radius: Real,
    ) -> Self {
        Self::new(Shape::round_convex_decomposition_with_params(
            vertices, indices, params, radius,
        ))
    }

    /// Initializes a new collider builder with a 2D convex polygon or 3D convex polyhedron
    /// obtained after computing the convex-hull of the given points.
    pub fn convex_hull(points: &[Vec2]) -> Option<Self> {
        let shape = Shape::convex_hull(points);
        shape.map(Self::new)
    }

    /// Initializes a new collider builder with a round 2D convex polygon or 3D convex polyhedron
    /// obtained after computing the convex-hull of the given points. The shape is dilated
    /// by a sphere of radius `border_radius`.
    pub fn round_convex_hull(points: &[Vec2], border_radius: Real) -> Option<Self> {
        let shape = Shape::round_convex_hull(points, border_radius);
        shape.map(Self::new)
    }

    /// Creates a new collider builder that is a convex polygon formed by the
    /// given polyline assumed to be convex (no convex-hull will be automatically
    /// computed).
    pub fn convex_polyline(points: &[Vec2]) -> Option<Self> {
        let shape = Shape::convex_polyline(points);
        shape.map(Self::new)
    }

    /// Creates a new collider builder that is a round convex polygon formed by the
    /// given polyline assumed to be convex (no convex-hull will be automatically
    /// computed). The polygon shape is dilated by a sphere of radius `border_radius`.
    pub fn round_convex_polyline(points: Vec<Vec2>, border_radius: Real) -> Option<Self> {
        Shape::round_convex_polyline(points, border_radius).map(Self::new)
    }

    /// Initializes a collider builder with a heightfield shape defined by its set of height and a scale
    /// factor along each coordinate axis.
    pub fn heightfield(heights: Vec<Real>, scale: Vec2) -> Self {
        Self::new(Shape::heightfield(heights, scale))
    }

    /// Make a collider from a Rapier or Parry shape.
    pub fn from_shared_shape(shape: SharedShape) -> Self {
        Self::new(Shape::from_shared_shape(shape))
    }

    /// Sets whether or not the collider built by this builder is a sensor.
    pub fn sensor(mut self, is_sensor: bool) -> Self {
        self.is_sensor = is_sensor;
        self
    }

    /// Sets the friction coefficient of the collider this builder will build.
    pub fn friction(mut self, friction: Real) -> Self {
        self.friction = friction;
        self
    }

    /// Sets the rule to be used to combine two friction coefficients in a contact.
    pub fn friction_combine_rule(mut self, rule: CoefficientCombineRule) -> Self {
        self.friction_combine_rule = rule;
        self
    }

    /// Sets the restitution coefficient of the collider this builder will build.
    pub fn restitution(mut self, restitution: Real) -> Self {
        self.restitution = restitution;
        self
    }

    /// Sets the rule to be used to combine two restitution coefficients in a contact.
    pub fn restitution_combine_rule(mut self, rule: CoefficientCombineRule) -> Self {
        self.restitution_combine_rule = rule;
        self
    }

    /// Sets the uniform density of the collider this builder will build.
    ///
    /// This will be overridden by a call to [`Self::mass`] or [`Self::mass_properties`] so it only
    /// makes sense to call either [`Self::density`] or [`Self::mass`] or [`Self::mass_properties`].
    ///
    /// The mass and angular inertia of this collider will be computed automatically based on its
    /// shape.
    pub fn density(mut self, density: Real) -> Self {
        self.mass_properties = ColliderMassProps::Density(density);
        self
    }

    /// Sets the mass of the collider this builder will build.
    ///
    /// This will be overridden by a call to [`Self::density`] or [`Self::mass_properties`] so it only
    /// makes sense to call either [`Self::density`] or [`Self::mass`] or [`Self::mass_properties`].
    ///
    /// The angular inertia of this collider will be computed automatically based on its shape
    /// and this mass value.
    pub fn mass(mut self, mass: Real) -> Self {
        self.mass_properties = ColliderMassProps::Mass(mass);
        self
    }

    /// Enable or disable the collider after its creation.
    pub fn enabled(mut self, enabled: bool) -> Self {
        self.enabled = enabled;
        self
    }
}

pub struct Shape(pub(crate) SharedShape);

impl Shape {
    /// Initialize a compound shape defined by its subshapes.
    pub fn compound(shapes: Vec<(Transform, Shape)>) -> Self {
        Self(SharedShape::compound(
            shapes
                .into_iter()
                .map(|x| ((x.0.position, x.0.rotation).into(), x.1 .0))
                .collect(),
        ))
    }

    /// Initialize a circle shape defined by its radius.
    pub fn circle(radius: Real) -> Self {
        Self(SharedShape::ball(radius))
    }

    /// Initialize a cuboid shape defined by its half-extents.
    pub fn square(hx: Real, hy: Real) -> Self {
        Self(SharedShape::cuboid(hx, hy))
    }

    /// Initialize a round cuboid shape defined by its half-extents and border radius.
    pub fn rounded_square(hx: Real, hy: Real, border_radius: Real) -> Self {
        Self(SharedShape::round_cuboid(hx, hy, border_radius))
    }

    /// Initialize a capsule shape from its endpoints and radius.
    pub fn capsule(a: Vec2, b: Vec2, radius: Real) -> Self {
        Self(SharedShape::capsule(a.into(), b.into(), radius))
    }

    /// Initialize a capsule shape aligned with the `x` axis.
    pub fn capsule_x(half_height: Real, radius: Real) -> Self {
        Self(SharedShape::capsule_x(half_height, radius))
    }

    /// Initialize a capsule shape aligned with the `y` axis.
    pub fn capsule_y(half_height: Real, radius: Real) -> Self {
        Self(SharedShape::capsule_x(half_height, radius))
    }

    /// Initialize a segment shape from its endpoints.
    pub fn segment(a: Vec2, b: Vec2) -> Self {
        Self(SharedShape::segment(a.into(), b.into()))
    }

    /// Initializes a triangle shape.
    pub fn triangle(a: Vec2, b: Vec2, c: Vec2) -> Self {
        Self(SharedShape::triangle(a.into(), b.into(), c.into()))
    }

    /// Initializes a triangle shape with round corners.
    pub fn round_triangle(a: Vec2, b: Vec2, c: Vec2, radius: Real) -> Self {
        Self(SharedShape::round_triangle(
            a.into(),
            b.into(),
            c.into(),
            radius,
        ))
    }

    /// Initializes a polyline shape defined by its vertex and index buffers.
    ///
    /// If no index buffer is provided, the polyline is assumed to describe a line strip.
    pub fn polyline(vertices: Vec<Vec2>, indices: Option<Vec<[u32; 2]>>) -> Self {
        Self(SharedShape::polyline(
            vertices.into_iter().map(|x| x.into()).collect(),
            indices,
        ))
    }

    /// Initializes a triangle mesh shape defined by its vertex and index buffers.
    pub fn trimesh(data: Data) -> Self {
        Self(SharedShape::trimesh(
            data.vertices
                .into_iter()
                .map(|x| x.position.into())
                .collect(),
            data.indices.chunks(3).map(|x| [x[0], x[1], x[2]]).collect(),
        ))
    }

    /// Initializes a compound shape obtained from the decomposition of the given
    /// polyline into convex parts.
    pub fn convex_decomposition(vertices: &[Vec2], indices: &[[u32; 2]]) -> Self {
        let vertices = vertices
            .iter()
            .map(|x| Point::from(x.to_array()))
            .collect::<Vec<Point<Real>>>();
        Self(SharedShape::convex_decomposition(&vertices, indices))
    }

    /// Initializes a compound shape obtained from the decomposition of the given
    /// polyline into convex parts dilated with round corners.
    pub fn round_convex_decomposition(
        vertices: &[Vec2],
        indices: &[[u32; 2]],
        radius: Real,
    ) -> Self {
        let vertices = vertices
            .iter()
            .map(|x| Point::from(x.to_array()))
            .collect::<Vec<Point<Real>>>();
        Self(SharedShape::round_convex_decomposition(
            &vertices, indices, radius,
        ))
    }

    /// Initializes a compound shape obtained from the decomposition of the given
    /// polyline into convex parts.
    pub fn convex_decomposition_with_params(
        vertices: &[Vec2],
        indices: &[[u32; 2]],
        params: &VHACDParameters,
    ) -> Self {
        let vertices = vertices
            .iter()
            .map(|x| Point::from(x.to_array()))
            .collect::<Vec<Point<Real>>>();
        Self(SharedShape::convex_decomposition_with_params(
            &vertices, indices, params,
        ))
    }

    /// Initializes a compound shape obtained from the decomposition of the given
    /// polyline into convex parts dilated with round corners.
    pub fn round_convex_decomposition_with_params(
        vertices: &[Vec2],
        indices: &[[u32; 2]],
        params: &VHACDParameters,
        radius: Real,
    ) -> Self {
        let vertices = vertices
            .iter()
            .map(|x| Point::from(x.to_array()))
            .collect::<Vec<Point<Real>>>();
        Self(SharedShape::round_convex_decomposition_with_params(
            &vertices, indices, params, radius,
        ))
    }

    /// Creates a new shared shape that is the convex-hull of the given points.
    pub fn convex_hull(points: &[Vec2]) -> Option<Self> {
        let points = points
            .iter()
            .map(|x| Point::from(x.to_array()))
            .collect::<Vec<Point<Real>>>();
        let shape = SharedShape::convex_hull(&points);
        shape.map(Self)
    }

    /// Creates a new shared shape with rounded corners that is the
    /// convex-hull of the given points, dilated by `border_radius`.
    pub fn round_convex_hull(points: &[Vec2], border_radius: Real) -> Option<Self> {
        let points = points
            .iter()
            .map(|x| Point::from(x.to_array()))
            .collect::<Vec<Point<Real>>>();
        let shape = SharedShape::round_convex_hull(&points, border_radius);
        shape.map(Self)
    }

    /// Creates a new shared shape that is a convex polygon formed by the
    /// given set of points assumed to form a convex polyline (no convex-hull will be automatically
    /// computed).
    pub fn convex_polyline(points: &[Vec2]) -> Option<Self> {
        let points = points
            .iter()
            .map(|x| Point::from(x.to_array()))
            .collect::<Vec<Point<Real>>>();
        let shape = SharedShape::convex_polyline(points);
        shape.map(Self)
    }

    /// Creates a new collider builder that is a round convex polygon formed by the
    /// given polyline assumed to be convex (no convex-hull will be automatically
    /// computed). The polygon shape is dilated by a sphere of radius `border_radius`.
    pub fn round_convex_polyline(points: Vec<Vec2>, border_radius: Real) -> Option<Self> {
        let points = points
            .iter()
            .map(|x| Point::from(x.to_array()))
            .collect::<Vec<Point<Real>>>();
        let shape = SharedShape::round_convex_polyline(points, border_radius);
        shape.map(Self)
    }

    /// Initializes an heightfield shape defined by its set of height and a scale
    /// factor along each coordinate axis.
    pub fn heightfield(heights: Vec<Real>, scale: Vec2) -> Self {
        Self(SharedShape::heightfield(heights.into(), scale.into()))
    }

    /// Initializes a let engine shape from a Rapier shared shape.
    pub fn from_shared_shape(shape: SharedShape) -> Self {
        Self(shape)
    }
}