1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//! Holds model related data structures like Vertices and premade models as well as a circle maker macro.

use glam::f32::{vec2, Mat4, Vec2};
use vulkano::{buffer::BufferContents, pipeline::graphics::vertex_input::Vertex as VTX};

/// A vertex containing it's position (xy) and texture position (uv).
#[repr(C)]
#[derive(BufferContents, VTX, Debug, Clone, Copy, PartialEq)]
pub struct Vertex {
    #[format(R32G32_SFLOAT)]
    pub position: Vec2,
    #[format(R32G32_SFLOAT)]
    pub tex_position: Vec2,
}

// vert2d in the future
/// Creates a vertex with given x and y coordinates for both position and texture position.
#[inline]
pub const fn vert(x: f32, y: f32) -> Vertex {
    Vertex {
        position: vec2(x, y),
        tex_position: vec2(x, y),
    }
}
// tvert2d
/// Creates a vertex with given x and y coordinates for position and given tx and ty coordinates for the UV texture mapping for those points.
#[inline]
pub const fn tvert(x: f32, y: f32, tx: f32, ty: f32) -> Vertex {
    Vertex {
        position: vec2(x, y),
        tex_position: vec2(tx, ty),
    }
}

/// MVP matrix.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, BufferContents)]
pub(crate) struct ModelViewProj {
    //sepparate to vertex and fragment
    pub model: Mat4,
    pub view: Mat4,
    pub proj: Mat4,
}

#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, BufferContents)]
pub(crate) struct ObjectFrag {
    pub color: [f32; 4],
    pub texture_id: u32,
}

impl Default for ObjectFrag {
    fn default() -> Self {
        Self {
            color: [0.0, 0.0, 0.0, 0.0],
            texture_id: 0,
        }
    }
}

#[repr(C)]
#[derive(Clone, Copy, Debug, Default, PartialEq, BufferContents)]
pub(crate) struct PushConstant {
    pub resolution: [f32; 2],
}

/// Vertex and index data for the appearance and shape of objects.
/// Has 3 simple presets.
///
/// Empty, Square and Triangle.
///
/// Right now it only supports 2d model data.
///
/// The models must have vertices and indices.
///
/// up is -y, down is +y.
/// right is +x und left is -x.
#[derive(Debug, Clone, PartialEq)]
pub struct Data {
    pub vertices: Vec<Vertex>,
    pub indices: Vec<u32>,
}

impl Data {
    pub const fn new(vertices: Vec<Vertex>, indices: Vec<u32>) -> Self {
        Self { vertices, indices }
    }
    /// Returns the data of a square that goes from `-1.0` to `1.0` in both X and Y.
    pub fn square() -> Self {
        Data {
            vertices: SQUARE.into(),
            indices: SQUARE_ID.into(),
        }
    }
    /// Returns the data of a triangle with the points `[0.0, -1.0], [-1.0, 1.0], [1.0, 1.0]`.
    pub fn triangle() -> Self {
        Data {
            vertices: TRIANGLE.into(),
            indices: TRIANGLE_ID.into(),
        }
    }
}

//struct object with position, size, rotation.

#[allow(dead_code)]
const TRIANGLE: [Vertex; 3] = [vert(0.0, -1.0), vert(-1.0, 1.0), vert(1.0, 1.0)];
#[allow(dead_code)]
const TRIANGLE_ID: [u32; 3] = [0, 1, 2];

#[allow(dead_code)]
const SQUARE: [Vertex; 4] = [
    vert(-1.0, -1.0),
    vert(1.0, -1.0),
    vert(-1.0, 1.0),
    vert(1.0, 1.0),
];
#[allow(dead_code)]
const SQUARE_ID: [u32; 6] = [0, 1, 2, 1, 2, 3];

/// A macro that makes it easy to create circles.
///
/// Returns [Data] with vertices and indices.
///
/// Using this with a `u32` makes a circle fan with as many corners as given.
///
/// Using this with a `u32` and a `f64` makes a circle fan that looks like a pie with the given percentage missing.
///
/// ## usage:
/// ```rust
/// use let_engine::prelude::*;
///
/// let hexagon: Data = make_circle!(6); // Makes a hexagon.
///
/// let pie: Data = make_circle!(20, 0.75); // Makes a pie circle fan with 20 edges with the top right part missing a quarter piece.
/// ```
#[macro_export]
macro_rules! make_circle {
    ($corners:expr) => {{ // Make a full circle fan with variable edges.
        use let_engine::{vec2, Vertex};
        let corners = $corners;
        let mut vertices: Vec<Vertex> = vec![];
        let mut indices: Vec<u32> = vec![];
        use core::f64::consts::TAU;
        // first point in the middle
        vertices.push(Vertex {
            position: vec2(0.0, 0.0),
            tex_position: vec2(0.0, 0.0),
        });
        // Going through the number of steps and pushing the % of one complete TAU circle to the vertices.
        for i in 0..corners {
            vertices.push(vert(
                    (TAU * ((i as f64) / corners as f64)).cos() as f32,
                    (TAU * ((i as f64) / corners as f64)).sin() as f32,
                ));
        }
        // Adding the indices adding the middle point, index and index after this one.
        for i in 0..corners - 1 { // -1 so the last index doesn't go above the total amounts of indices.
            indices.extend([0, i + 1, i + 2]);
        }
        // Completing the indices by setting the last 2 indices to the last point and the first point of the circle.
        indices.extend([0, corners, 1]);
        Data { vertices, indices }
    }};
    ($corners:expr, $percent:expr) => {{ // Make a pie circle fan with the amount of edges and completeness of the circle.
        use core::f64::consts::TAU;
        use let_engine::{vec2, Vertex};
        let corners = $corners;
        let percent = $percent as f64;
        let percent: f64 = percent.clamp(0.0, 1.0);
        let mut vertices: Vec<Vertex> = vec![];
        let mut indices: Vec<u32> = vec![];

        let count = TAU * percent;

        vertices.push(vert(0.0, 0.0));
        // Do the same as last time just with +1 iterations, because the last index doesn't go back to the first circle position.
        for i in 0..corners + 1 {
            vertices.push(vert(
                    (count * ((i as f64) / corners as f64)).cos() as f32,
                    (count * ((i as f64) / corners as f64)).sin() as f32,
                ));
        }
        // This time the complete iteration is possible because the last index of the circle is not the first one as in the last.
        for i in 0..corners {
            indices.extend([0, i + 1, i + 2]);
        }

        Data { vertices, indices }
    }};
}