1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
//! Holds model related data structures like Vertices and premade models as well as a circle maker macro.
use glam::f32::{vec2, Mat4, Vec2};
use vulkano::{buffer::BufferContents, pipeline::graphics::vertex_input::Vertex as VTX};
/// A vertex containing it's position (xy) and texture position (uv).
#[repr(C)]
#[derive(BufferContents, VTX, Debug, Clone, Copy, PartialEq)]
pub struct Vertex {
#[format(R32G32_SFLOAT)]
pub position: Vec2,
#[format(R32G32_SFLOAT)]
pub tex_position: Vec2,
}
// vert2d in the future
/// Creates a vertex with given x and y coordinates for both position and texture position.
#[inline]
pub const fn vert(x: f32, y: f32) -> Vertex {
Vertex {
position: vec2(x, y),
tex_position: vec2(x, y),
}
}
// tvert2d
/// Creates a vertex with given x and y coordinates for position and given tx and ty coordinates for the UV texture mapping for those points.
#[inline]
pub const fn tvert(x: f32, y: f32, tx: f32, ty: f32) -> Vertex {
Vertex {
position: vec2(x, y),
tex_position: vec2(tx, ty),
}
}
/// MVP matrix.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, BufferContents)]
pub(crate) struct ModelViewProj {
//sepparate to vertex and fragment
pub model: Mat4,
pub view: Mat4,
pub proj: Mat4,
}
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, BufferContents)]
pub(crate) struct ObjectFrag {
pub color: [f32; 4],
pub texture_id: u32,
}
impl Default for ObjectFrag {
fn default() -> Self {
Self {
color: [0.0, 0.0, 0.0, 0.0],
texture_id: 0,
}
}
}
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, PartialEq, BufferContents)]
pub(crate) struct PushConstant {
pub resolution: [f32; 2],
}
/// Vertex and index data for the appearance and shape of objects.
/// Has 3 simple presets.
///
/// Empty, Square and Triangle.
///
/// Right now it only supports 2d model data.
///
/// The models must have vertices and indices.
///
/// up is -y, down is +y.
/// right is +x und left is -x.
#[derive(Debug, Clone, PartialEq)]
pub struct Data {
pub vertices: Vec<Vertex>,
pub indices: Vec<u32>,
}
impl Data {
pub const fn new(vertices: Vec<Vertex>, indices: Vec<u32>) -> Self {
Self { vertices, indices }
}
/// Returns the data of a square that goes from `-1.0` to `1.0` in both X and Y.
pub fn square() -> Self {
Data {
vertices: SQUARE.into(),
indices: SQUARE_ID.into(),
}
}
/// Returns the data of a triangle with the points `[0.0, -1.0], [-1.0, 1.0], [1.0, 1.0]`.
pub fn triangle() -> Self {
Data {
vertices: TRIANGLE.into(),
indices: TRIANGLE_ID.into(),
}
}
}
//struct object with position, size, rotation.
#[allow(dead_code)]
const TRIANGLE: [Vertex; 3] = [vert(0.0, -1.0), vert(-1.0, 1.0), vert(1.0, 1.0)];
#[allow(dead_code)]
const TRIANGLE_ID: [u32; 3] = [0, 1, 2];
#[allow(dead_code)]
const SQUARE: [Vertex; 4] = [
vert(-1.0, -1.0),
vert(1.0, -1.0),
vert(-1.0, 1.0),
vert(1.0, 1.0),
];
#[allow(dead_code)]
const SQUARE_ID: [u32; 6] = [0, 1, 2, 1, 2, 3];
/// A macro that makes it easy to create circles.
///
/// Returns [Data] with vertices and indices.
///
/// Using this with a `u32` makes a circle fan with as many corners as given.
///
/// Using this with a `u32` and a `f64` makes a circle fan that looks like a pie with the given percentage missing.
///
/// ## usage:
/// ```rust
/// use let_engine::prelude::*;
///
/// let hexagon: Data = make_circle!(6); // Makes a hexagon.
///
/// let pie: Data = make_circle!(20, 0.75); // Makes a pie circle fan with 20 edges with the top right part missing a quarter piece.
/// ```
#[macro_export]
macro_rules! make_circle {
($corners:expr) => {{ // Make a full circle fan with variable edges.
use let_engine::{vec2, Vertex};
let corners = $corners;
let mut vertices: Vec<Vertex> = vec![];
let mut indices: Vec<u32> = vec![];
use core::f64::consts::TAU;
// first point in the middle
vertices.push(Vertex {
position: vec2(0.0, 0.0),
tex_position: vec2(0.0, 0.0),
});
// Going through the number of steps and pushing the % of one complete TAU circle to the vertices.
for i in 0..corners {
vertices.push(vert(
(TAU * ((i as f64) / corners as f64)).cos() as f32,
(TAU * ((i as f64) / corners as f64)).sin() as f32,
));
}
// Adding the indices adding the middle point, index and index after this one.
for i in 0..corners - 1 { // -1 so the last index doesn't go above the total amounts of indices.
indices.extend([0, i + 1, i + 2]);
}
// Completing the indices by setting the last 2 indices to the last point and the first point of the circle.
indices.extend([0, corners, 1]);
Data { vertices, indices }
}};
($corners:expr, $percent:expr) => {{ // Make a pie circle fan with the amount of edges and completeness of the circle.
use core::f64::consts::TAU;
use let_engine::{vec2, Vertex};
let corners = $corners;
let percent = $percent as f64;
let percent: f64 = percent.clamp(0.0, 1.0);
let mut vertices: Vec<Vertex> = vec![];
let mut indices: Vec<u32> = vec![];
let count = TAU * percent;
vertices.push(vert(0.0, 0.0));
// Do the same as last time just with +1 iterations, because the last index doesn't go back to the first circle position.
for i in 0..corners + 1 {
vertices.push(vert(
(count * ((i as f64) / corners as f64)).cos() as f32,
(count * ((i as f64) / corners as f64)).sin() as f32,
));
}
// This time the complete iteration is possible because the last index of the circle is not the first one as in the last.
for i in 0..corners {
indices.extend([0, i + 1, i + 2]);
}
Data { vertices, indices }
}};
}