1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
use glam::f32::{vec2, Mat4, Vec2};
use vulkano::{buffer::BufferContents, pipeline::graphics::vertex_input::Vertex as VTX};

#[repr(C)]
#[derive(BufferContents, VTX, Debug, Clone, Copy, PartialEq)]
pub struct Vertex {
    #[format(R32G32_SFLOAT)]
    pub position: Vec2,
    #[format(R32G32_SFLOAT)]
    pub tex_position: Vec2,
}

pub fn vertex(x: f32, y: f32) -> Vertex {
    Vertex {
        position: vec2(x, y),
        tex_position: vec2(x, y),
    }
}

#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, BufferContents)]
pub struct ModelViewProj {
    //sepparate to vertex and fragment
    pub model: Mat4,
    pub view: Mat4,
    pub proj: Mat4,
}

#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, BufferContents)]
pub struct ObjectFrag {
    pub color: [f32; 4],
    pub texture_id: u32,
}

impl Default for ObjectFrag {
    fn default() -> Self {
        Self {
            color: [0.0, 0.0, 0.0, 0.0],
            texture_id: 0,
        }
    }
}

#[repr(C)]
#[derive(Clone, Copy, Debug, Default, PartialEq, BufferContents)]
pub struct PushConstant {
    pub resolution: [f32; 2],
}

/// The 4 Camera scaling modes determine how far you can see when the window changes scale.
/// For 2D games those are a problem because there will always be someone with a monitor or window with a weird aspect ratio that can see much more than others when it's not on stretch mode.
/// Those are the options in this game engine:
///
/// 1: Stretch - goes from -1 to 1 in both x and y. So the camera view stretches when the window is not square.
///
/// 2: Linear - Tries to be fair with window scaling and tries to have the same width\*height surface all the time. But when Making the window really thin or something like that you can still see the same height\*width so you could see really far.
///
/// 3: Circle - Imagine a rope tied to itself to make a circle and imagine trying to fit 4 corners of a rectangle as far away from each other. It's similar to Linear but you can't look that far the tighter the window is.
///
/// 4: Limited - The biggest side is always -1 to 1. Simple and more unfair the tighter your window is.
///
/// 5: Expand - The bigger the window is the more you can see. Good for HUDs, fonts and textures.

#[derive(Clone, Copy, Debug, PartialEq)]
pub enum CameraScaling {
    Stretch = 1,
    Linear = 2,
    Circle = 3,
    Limited = 4,
    Expand = 5,
}

impl Default for CameraScaling {
    fn default() -> Self {
        Self::Stretch
    }
}

pub const CENTER: [f32; 2] = [0.5; 2];
pub const N: [f32; 2] = [0.5, 0.0];
pub const NO: [f32; 2] = [1.0, 0.0];
pub const O: [f32; 2] = [1.0, 0.5];
pub const SO: [f32; 2] = [1.0; 2];
pub const S: [f32; 2] = [0.5, 1.0];
pub const SW: [f32; 2] = [0.0, 1.0];
pub const W: [f32; 2] = [0.0, 0.5];
pub const NW: [f32; 2] = [0.0; 2];

/// Vertex and index data for the appearance and shape of objects.
/// Has 3 simple presets.
///
/// Empty, Square and Triangle.
#[derive(Debug, Clone, PartialEq)]
pub struct Data {
    pub vertices: Vec<Vertex>,
    pub indices: Vec<u32>,
}

impl Data {
    pub fn empty() -> Self {
        Data {
            vertices: vec![],
            indices: vec![],
        }
    }
    pub fn square() -> Self {
        Data {
            vertices: SQUARE.into(),
            indices: SQUARE_ID.into(),
        }
    }
    pub fn triangle() -> Self {
        Data {
            vertices: TRIANGLE.into(),
            indices: TRIANGLE_ID.into(),
        }
    }
}

//struct object with position, size, rotation.

#[allow(dead_code)]
pub const TRIANGLE: [Vertex; 3] = [
    Vertex {
        position: vec2(0.0, -1.0),
        tex_position: vec2(0.0, -1.0),
    },
    Vertex {
        position: vec2(-1.0, 1.0),
        tex_position: vec2(-1.0, 1.0),
    },
    Vertex {
        position: vec2(1.0, 1.0),
        tex_position: vec2(1.0, 1.0),
    },
];
#[allow(dead_code)]
pub const TRIANGLE_ID: [u32; 3] = [0, 1, 2];

#[allow(dead_code)]
pub const SQUARE: [Vertex; 4] = [
    Vertex {
        // 0
        position: vec2(-1.0, -1.0),
        tex_position: vec2(-1.0, -1.0),
    },
    Vertex {
        // 1
        position: vec2(1.0, -1.0),
        tex_position: vec2(1.0, -1.0),
    },
    Vertex {
        // 2
        position: vec2(-1.0, 1.0),
        tex_position: vec2(-1.0, 1.0),
    },
    Vertex {
        // 3
        position: vec2(1.0, 1.0),
        tex_position: vec2(1.0, 1.0),
    },
];
#[allow(dead_code)]
pub const SQUARE_ID: [u32; 6] = [0, 1, 2, 1, 2, 3];

/// A macro that makes it easy to create circles.
#[macro_export]
macro_rules! make_circle {
    ($corners:expr) => {{ // Make a full circle fan with variable edges.
        use let_engine::{vec2, Vertex};
        let corners = $corners;
        let mut vertices: Vec<Vertex> = vec![];
        let mut indices: Vec<u32> = vec![];
        use core::f64::consts::TAU;
        // first point in the middle
        vertices.push(Vertex {
            position: vec2(0.0, 0.0),
            tex_position: vec2(0.0, 0.0),
        });
        // Going through the number of steps and pushing the % of one complete TAU circle to the vertices.
        for i in 0..corners {
            vertices.push(Vertex {
                position: vec2(
                    (TAU * ((i as f64) / corners as f64)).cos() as f32,
                    (TAU * ((i as f64) / corners as f64)).sin() as f32,
                ),
                tex_position: vec2(
                    (TAU * ((i as f64) / corners as f64)).cos() as f32,
                    (TAU * ((i as f64) / corners as f64)).sin() as f32,
                ),
            });
        }
        // Adding the indices adding the middle point, index and index after this one.
        for i in 0..corners - 1 { // -1 so the last index doesn't go above the total amounts of indices.
            indices.extend([0, i + 1, i + 2]);
        }
        // Completing the indices by setting the last 2 indices to the last point and the first point of the circle.
        indices.extend([0, corners, 1]);
        Data { vertices, indices }
    }};
    ($corners:expr, $percent:expr) => {{ // Make a pie circle fan with the amount of edges and completeness of the circle.
        use core::f64::consts::TAU;
        use let_engine::{vec2, Vertex};
        let corners = $corners;
        let percent = $percent as f64;
        let percent: f64 = percent.clamp(0.0, 1.0);
        let mut vertices: Vec<Vertex> = vec![];
        let mut indices: Vec<u32> = vec![];

        let count = TAU * percent;

        vertices.push(Vertex {
            position: vec2(0.0, 0.0),
            tex_position: vec2(0.0, 0.0),
        });
        // Do the same as last time just with +1 iterations, because the last index doesn't go back to the first circle position.
        for i in 0..corners + 1 {
            vertices.push(Vertex {
                position: vec2(
                    (count * ((i as f64) / corners as f64)).cos() as f32,
                    (count * ((i as f64) / corners as f64)).sin() as f32,
                ),
                tex_position: vec2(
                    (count * ((i as f64) / corners as f64)).cos() as f32,
                    (count * ((i as f64) / corners as f64)).sin() as f32,
                ),
            });
        }
        // This time the complete iteration is possible because the last index of the circle is not the first one as in the last.
        for i in 0..corners {
            indices.extend([0, i + 1, i + 2]);
        }

        Data { vertices, indices }
    }};
}