1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
//! Wrapping of Rapiers rigid bodies to be used with Let Engine and Glam.

use glam::Vec2;
use rapier2d::prelude::*;

#[derive(Clone, Default, Debug)]
pub struct RigidBody(pub(crate) rapier2d::dynamics::RigidBody);

impl RigidBody {
    /// The activation status of this rigid-body.
    pub fn activation(&self) -> &RigidBodyActivation {
        self.0.activation()
    }

    /// Mutable reference to the activation status of this rigid-body.
    pub fn activation_mut(&mut self) -> &mut RigidBodyActivation {
        self.0.activation_mut()
    }

    /// Is this rigid-body enabled?
    pub fn is_enabled(&self) -> bool {
        self.0.is_enabled()
    }

    /// Sets whether this rigid-body is enabled or not.
    pub fn set_enabled(&mut self, enabled: bool) {
        self.0.set_enabled(enabled)
    }
    /// The linear damping coefficient of this rigid-body.
    #[inline]
    pub fn linear_damping(&self) -> Real {
        self.0.linear_damping()
    }

    /// Sets the linear damping coefficient of this rigid-body.
    #[inline]
    pub fn set_linear_damping(&mut self, damping: Real) {
        self.0.set_linear_damping(damping)
    }

    /// The angular damping coefficient of this rigid-body.
    #[inline]
    pub fn angular_damping(&self) -> Real {
        self.0.angular_damping()
    }

    /// Sets the angular damping coefficient of this rigid-body.
    #[inline]
    pub fn set_angular_damping(&mut self, damping: Real) {
        self.0.set_angular_damping(damping)
    }

    /// The type of this rigid-body.
    pub fn body_type(&self) -> RigidBodyType {
        self.0.body_type()
    }

    /// Sets the type of this rigid-body.
    pub fn set_body_type(&mut self, status: RigidBodyType, wake_up: bool) {
        self.0.set_body_type(status, wake_up)
    }

    /// The world-space center-of-mass of this rigid-body.
    #[inline]
    pub fn center_of_mass(&self) -> Vec2 {
        (*self.0.center_of_mass()).into()
    }

    /// The mass-properties of this rigid-body.
    #[inline]
    pub fn mass_properties(&self) -> &RigidBodyMassProps {
        self.0.mass_properties()
    }

    /// The dominance group of this rigid-body.
    ///
    /// This method always returns `i8::MAX + 1` for non-dynamic
    /// rigid-bodies.
    #[inline]
    pub fn effective_dominance_group(&self) -> i16 {
        self.0.effective_dominance_group()
    }

    /// The axes along which this rigid-body cannot translate or rotate.
    #[inline]
    pub fn locked_axes(&self) -> LockedAxes {
        self.0.locked_axes()
    }

    /// Sets the axes along which this rigid-body cannot translate or rotate.
    #[inline]
    pub fn set_locked_axes(&mut self, locked_axes: LockedAxes, wake_up: bool) {
        self.0.set_locked_axes(locked_axes, wake_up)
    }

    #[inline]
    /// Locks or unlocks all the rotations of this rigid-body.
    pub fn lock_rotations(&mut self, locked: bool, wake_up: bool) {
        self.0.lock_rotations(locked, wake_up)
    }

    #[inline]
    /// Locks or unlocks all the rotations of this rigid-body.
    pub fn lock_translations(&mut self, locked: bool, wake_up: bool) {
        self.0.lock_translations(locked, wake_up)
    }

    #[inline]
    /// Locks or unlocks translation of this rigid-body along each cartesian axes.
    pub fn set_enabled_translations(
        &mut self,
        allow_translation_x: bool,
        allow_translation_y: bool,
        wake_up: bool,
    ) {
        self.0
            .set_enabled_translations(allow_translation_x, allow_translation_y, wake_up)
    }

    /// Are the translations of this rigid-body locked?
    pub fn is_translation_locked(&self) -> bool {
        self.0.is_translation_locked()
    }

    /// Is the rotation of this rigid-body locked?
    pub fn is_rotation_locked(&self) -> bool {
        self.0.is_rotation_locked()
    }

    /// Enables of disable CCD (continuous collision-detection) for this rigid-body.
    ///
    /// CCD prevents tunneling, but may still allow limited interpenetration of colliders.
    pub fn enable_ccd(&mut self, enabled: bool) {
        self.0.enable_ccd(enabled)
    }

    /// Is CCD (continous collision-detection) enabled for this rigid-body?
    pub fn is_ccd_enabled(&self) -> bool {
        self.0.is_ccd_enabled()
    }

    // This is different from `is_ccd_enabled`. This checks that CCD
    // is active for this rigid-body, i.e., if it was seen to move fast
    // enough to justify a CCD run.
    /// Is CCD active for this rigid-body?
    ///
    /// The CCD is considered active if the rigid-body is moving at
    /// a velocity greater than an automatically-computed threshold.
    ///
    /// This is not the same as `self.is_ccd_enabled` which only
    /// checks if CCD is enabled to run for this rigid-body or if
    /// it is completely disabled (independently from its velocity).
    pub fn is_ccd_active(&self) -> bool {
        self.0.is_ccd_active()
    }

    /// Is this rigid body dynamic?
    ///
    /// A dynamic body can move freely and is affected by forces.
    pub fn is_dynamic(&self) -> bool {
        self.0.is_dynamic()
    }

    /// Is this rigid body kinematic?
    ///
    /// A kinematic body can move freely but is not affected by forces.
    pub fn is_kinematic(&self) -> bool {
        self.0.is_kinematic()
    }

    /// Is this rigid body fixed?
    ///
    /// A fixed body cannot move and is not affected by forces.
    pub fn is_fixed(&self) -> bool {
        self.0.is_fixed()
    }

    /// The mass of this rigid body.
    ///
    /// Returns zero if this rigid body has an infinite mass.
    pub fn mass(&self) -> Real {
        self.0.mass()
    }

    /// The predicted position of this rigid-body.
    ///
    /// If this rigid-body is kinematic this value is set by the `set_next_kinematic_position`
    /// method and is used for estimating the kinematic body velocity at the next timestep.
    /// For non-kinematic bodies, this value is currently unspecified.
    pub fn next_position(&self) -> (Vec2, f32) {
        (*self.0.next_position()).into()
    }

    /// The scale factor applied to the gravity affecting this rigid-body.
    pub fn gravity_scale(&self) -> Real {
        self.0.gravity_scale()
    }

    /// Sets the gravity scale facter for this rigid-body.
    pub fn set_gravity_scale(&mut self, scale: Real, wake_up: bool) {
        self.0.set_gravity_scale(scale, wake_up)
    }

    /// The dominance group of this rigid-body.
    pub fn dominance_group(&self) -> i8 {
        self.0.dominance_group()
    }

    /// The dominance group of this rigid-body.
    pub fn set_dominance_group(&mut self, dominance: i8) {
        self.0.set_dominance_group(dominance)
    }

    /// Put this rigid body to sleep.
    ///
    /// A sleeping body no longer moves and is no longer simulated by the physics engine unless
    /// it is waken up. It can be woken manually with `self.wake_up` or automatically due to
    /// external forces like contacts.
    pub fn sleep(&mut self) {
        self.0.sleep()
    }

    /// Wakes up this rigid body if it is sleeping.
    ///
    /// If `strong` is `true` then it is assured that the rigid-body will
    /// remain awake during multiple subsequent timesteps.
    pub fn wake_up(&mut self, strong: bool) {
        self.0.wake_up(strong)
    }

    /// Is this rigid body sleeping?
    pub fn is_sleeping(&self) -> bool {
        self.0.is_sleeping()
    }

    /// Is the velocity of this body not zero?
    pub fn is_moving(&self) -> bool {
        self.0.is_moving()
    }

    /// The linear velocity of this rigid-body.
    pub fn linvel(&self) -> Vec2 {
        (*self.0.linvel()).into()
    }

    /// The angular velocity of this rigid-body.
    pub fn angvel(&self) -> Real {
        self.0.angvel()
    }

    pub fn set_linvel(&mut self, linvel: Vec2, wake_up: bool) {
        self.0.set_linvel(linvel.into(), wake_up)
    }

    /// The angular velocity of this rigid-body.
    ///
    /// If `wake_up` is `true` then the rigid-body will be woken up if it was
    /// put to sleep because it did not move for a while.
    pub fn set_angvel(&mut self, angvel: Real, wake_up: bool) {
        self.0.set_angvel(angvel, wake_up)
    }

    /// If this rigid body is kinematic, sets its future translation after the next timestep integration.
    pub fn set_next_kinematic_rotation(&mut self, rotation: Real) {
        if self.is_kinematic() {
            self.0
                .set_next_kinematic_rotation(Rotation::from_angle(rotation));
        }
    }

    /// If this rigid body is kinematic, sets its future translation after the next timestep integration.
    pub fn set_next_kinematic_translation(&mut self, translation: Vec2) {
        self.0.set_next_kinematic_translation(translation.into())
    }

    /// If this rigid body is kinematic, sets its future position after the next timestep integration.
    pub fn set_next_kinematic_position(&mut self, pos: (Vec2, f32)) {
        self.0.set_next_kinematic_position(pos.into())
    }

    /// Predicts the next position of this rigid-body, by integrating its velocity and forces
    /// by a time of `dt`.
    pub fn predict_position_using_velocity_and_forces(&self, dt: Real) -> (Vec2, f32) {
        self.0.predict_position_using_velocity_and_forces(dt).into()
    }
}

impl RigidBody {
    /// The velocity of the given world-space point on this rigid-body.
    pub fn velocity_at_point(&self, point: Vec2) -> Vec2 {
        let pos = *self.0.velocity_at_point(&point.into());
        (pos.x, pos.y).into()
    }

    /// The kinetic energy of this body.
    pub fn kinetic_energy(&self) -> Real {
        self.0.kinetic_energy()
    }

    /// The potential energy of this body in a gravity field.
    pub fn gravitational_potential_energy(&self, dt: Real, gravity: Vec2) -> Real {
        self.0.gravitational_potential_energy(dt, gravity.into())
    }
}

/// ## Applying forces and torques
impl RigidBody {
    /// Resets to zero all the constant (linear) forces manually applied to this rigid-body.
    pub fn reset_forces(&mut self, wake_up: bool) {
        self.0.reset_forces(wake_up)
    }

    /// Resets to zero all the constant torques manually applied to this rigid-body.
    pub fn reset_torques(&mut self, wake_up: bool) {
        self.0.reset_torques(wake_up)
    }

    /// Adds to this rigid-body a constant force applied at its center-of-mass.ç
    ///
    /// This does nothing on non-dynamic bodies.
    pub fn add_force(&mut self, force: Vec2, wake_up: bool) {
        self.0.add_force(force.into(), wake_up)
    }

    /// Adds to this rigid-body a constant torque at its center-of-mass.
    ///
    /// This does nothing on non-dynamic bodies.
    pub fn add_torque(&mut self, torque: Real, wake_up: bool) {
        self.0.add_torque(torque, wake_up)
    }

    /// Adds to this rigid-body a constant force at the given world-space point of this rigid-body.
    ///
    /// This does nothing on non-dynamic bodies.
    pub fn add_force_at_point(&mut self, force: Vec2, point: Vec2, wake_up: bool) {
        self.0
            .add_force_at_point(force.into(), point.into(), wake_up)
    }
}

/// ## Applying impulses and angular impulses
impl RigidBody {
    /// Applies an impulse at the center-of-mass of this rigid-body.
    /// The impulse is applied right away, changing the linear velocity.
    /// This does nothing on non-dynamic bodies.
    pub fn apply_impulse(&mut self, impulse: Vec2, wake_up: bool) {
        self.0.apply_impulse(impulse.into(), wake_up)
    }

    /// Applies an angular impulse at the center-of-mass of this rigid-body.
    /// The impulse is applied right away, changing the angular velocity.
    /// This does nothing on non-dynamic bodies.
    pub fn apply_torque_impulse(&mut self, torque_impulse: Real, wake_up: bool) {
        self.0.apply_torque_impulse(torque_impulse, wake_up)
    }

    /// Applies an impulse at the given world-space point of this rigid-body.
    /// The impulse is applied right away, changing the linear and/or angular velocities.
    /// This does nothing on non-dynamic bodies.
    pub fn apply_impulse_at_point(&mut self, impulse: Vec2, point: Vec2, wake_up: bool) {
        self.0
            .apply_impulse_at_point(impulse.into(), point.into(), wake_up)
    }

    /// Retrieves the constant force(s) that the user has added to the body.
    ///
    /// Returns zero if the rigid-body isn’t dynamic.
    pub fn user_force(&self) -> Vec2 {
        self.0.user_force().into()
    }
}

/// A builder for rigid-bodies.
#[derive(Clone, Debug, PartialEq)]
#[must_use = "Builder functions return the updated builder"]
pub struct RigidBodyBuilder {
    /// The linear velocity of the rigid-body to be built.
    pub linvel: Vec2,
    /// The angular velocity of the rigid-body to be built.
    pub angvel: Real,
    /// The scale factor applied to the gravity affecting the rigid-body to be built, `1.0` by default.
    pub gravity_scale: Real,
    /// Damping factor for gradually slowing down the translational motion of the rigid-body, `0.0` by default.
    pub linear_damping: Real,
    /// Damping factor for gradually slowing down the angular motion of the rigid-body, `0.0` by default.
    pub angular_damping: Real,
    body_type: RigidBodyType,
    mprops_flags: LockedAxes,
    /// Whether or not the rigid-body to be created can sleep if it reaches a dynamic equilibrium.
    pub can_sleep: bool,
    /// Whether or not the rigid-body is to be created asleep.
    pub sleeping: bool,
    /// Whether continuous collision-detection is enabled for the rigid-body to be built.
    ///
    /// CCD prevents tunneling, but may still allow limited interpenetration of colliders.
    pub ccd_enabled: bool,
    /// The dominance group of the rigid-body to be built.
    pub dominance_group: i8,
    /// Will the rigid-body being built be enabled?
    pub enabled: bool,
}

impl RigidBodyBuilder {
    /// Initialize a new builder for a rigid body which is either fixed, dynamic, or kinematic.
    pub fn new(body_type: RigidBodyType) -> Self {
        Self {
            linvel: Vec2::default(),
            angvel: 0.0,
            gravity_scale: 1.0,
            linear_damping: 0.0,
            angular_damping: 0.0,
            body_type,
            mprops_flags: LockedAxes::empty(),
            can_sleep: true,
            sleeping: false,
            ccd_enabled: false,
            dominance_group: 0,
            enabled: true,
        }
    }
    /// Initializes the builder of a new fixed rigid body.
    pub fn fixed() -> Self {
        Self::new(RigidBodyType::Fixed)
    }

    /// Initializes the builder of a new velocity-based kinematic rigid body.
    pub fn kinematic_velocity_based() -> Self {
        Self::new(RigidBodyType::KinematicVelocityBased)
    }

    /// Initializes the builder of a new position-based kinematic rigid body.
    pub fn kinematic_position_based() -> Self {
        Self::new(RigidBodyType::KinematicPositionBased)
    }

    /// Initializes the builder of a new dynamic rigid body.
    pub fn dynamic() -> Self {
        Self::new(RigidBodyType::Dynamic)
    }

    /// Sets the scale applied to the gravity force affecting the rigid-body to be created.
    pub fn gravity_scale(mut self, scale_factor: Real) -> Self {
        self.gravity_scale = scale_factor;
        self
    }

    /// Sets the dominance group of this rigid-body.
    pub fn dominance_group(mut self, group: i8) -> Self {
        self.dominance_group = group;
        self
    }

    /// Sets the axes along which this rigid-body cannot translate or rotate.
    pub fn locked_axes(mut self, locked_axes: LockedAxes) -> Self {
        self.mprops_flags = locked_axes;
        self
    }

    /// Prevents this rigid-body from translating because of forces.
    pub fn lock_translations(mut self) -> Self {
        self.mprops_flags.set(LockedAxes::TRANSLATION_LOCKED, true);
        self
    }

    /// Only allow translations of this rigid-body around specific coordinate axes.
    pub fn enabled_translations(
        mut self,
        allow_translations_x: bool,
        allow_translations_y: bool,
    ) -> Self {
        self.mprops_flags
            .set(LockedAxes::TRANSLATION_LOCKED_X, !allow_translations_x);
        self.mprops_flags
            .set(LockedAxes::TRANSLATION_LOCKED_Y, !allow_translations_y);
        self
    }

    /// Prevents this rigid-body from rotating because of forces.
    pub fn lock_rotations(mut self) -> Self {
        self.mprops_flags.set(LockedAxes::ROTATION_LOCKED_X, true);
        self.mprops_flags.set(LockedAxes::ROTATION_LOCKED_Y, true);
        self.mprops_flags.set(LockedAxes::ROTATION_LOCKED_Z, true);
        self
    }

    /// Sets the damping factor for the linear part of the rigid-body motion.
    ///
    /// The higher the linear damping factor is, the more quickly the rigid-body
    /// will slow-down its translational movement.
    pub fn linear_damping(mut self, factor: Real) -> Self {
        self.linear_damping = factor;
        self
    }

    /// Sets the damping factor for the angular part of the rigid-body motion.
    ///
    /// The higher the angular damping factor is, the more quickly the rigid-body
    /// will slow-down its rotational movement.
    pub fn angular_damping(mut self, factor: Real) -> Self {
        self.angular_damping = factor;
        self
    }

    /// Sets the initial linear velocity of the rigid-body to be created.
    pub fn linvel(mut self, linvel: Vec2) -> Self {
        self.linvel = linvel;
        self
    }

    /// Sets the initial angular velocity of the rigid-body to be created.
    pub fn angvel(mut self, angvel: Real) -> Self {
        self.angvel = angvel;
        self
    }

    /// Sets whether or not the rigid-body to be created can sleep if it reaches a dynamic equilibrium.
    pub fn can_sleep(mut self, can_sleep: bool) -> Self {
        self.can_sleep = can_sleep;
        self
    }

    /// Sets whether or not continuous collision-detection is enabled for this rigid-body.
    ///
    /// CCD prevents tunneling, but may still allow limited interpenetration of colliders.
    pub fn ccd_enabled(mut self, enabled: bool) -> Self {
        self.ccd_enabled = enabled;
        self
    }

    /// Sets whether or not the rigid-body is to be created asleep.
    pub fn sleeping(mut self, sleeping: bool) -> Self {
        self.sleeping = sleeping;
        self
    }

    /// Enable or disable the rigid-body after its creation.
    pub fn enabled(mut self, enabled: bool) -> Self {
        self.enabled = enabled;
        self
    }

    /// Build a new rigid-body with the parameters configured with this builder.
    pub fn build(&self) -> RigidBody {
        let builder = rapier2d::dynamics::RigidBodyBuilder::new(self.body_type)
            .locked_axes(self.mprops_flags)
            .linvel(self.linvel.into())
            .angvel(self.angvel)
            .gravity_scale(self.gravity_scale)
            .linear_damping(self.linear_damping)
            .angular_damping(self.angular_damping)
            .can_sleep(self.can_sleep)
            .sleeping(self.sleeping)
            .ccd_enabled(self.ccd_enabled)
            .dominance_group(self.dominance_group)
            .enabled(self.enabled);

        RigidBody(builder.into())
    }
}

impl From<RigidBodyBuilder> for RigidBody {
    fn from(val: RigidBodyBuilder) -> Self {
        val.build()
    }
}