1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// Copyright (C) 2019-2020 Aleo Systems Inc.
// This file is part of the Leo library.

// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.

//! Enforces constraints on a function in a compiled Leo program.

use crate::{
    errors::FunctionError,
    program::{new_scope, ConstrainedProgram},
    value::ConstrainedValue,
    GroupType,
};

use leo_typed::{Expression, Function, InputVariable, Span, Type};

use snarkos_models::{
    curves::{Field, PrimeField},
    gadgets::r1cs::ConstraintSystem,
};

pub fn check_arguments_length(expected: usize, actual: usize, span: Span) -> Result<(), FunctionError> {
    // Make sure we are given the correct number of arguments
    if expected != actual {
        Err(FunctionError::arguments_length(expected, actual, span))
    } else {
        Ok(())
    }
}

impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
    pub(crate) fn enforce_function<CS: ConstraintSystem<F>>(
        &mut self,
        cs: &mut CS,
        scope: String,
        caller_scope: String,
        function: Function,
        input: Vec<Expression>,
    ) -> Result<ConstrainedValue<F, G>, FunctionError> {
        let function_name = new_scope(scope.clone(), function.get_name());

        // Make sure we are given the correct number of input variables
        check_arguments_length(function.input.len(), input.len(), function.span.clone())?;

        // Store input values as new variables in resolved program
        for (input_model, input_expression) in function.input.clone().iter().zip(input.into_iter()) {
            let (name, value) = match input_model {
                InputVariable::InputKeyword(identifier) => {
                    let input_value = self.enforce_function_input(
                        cs,
                        scope.clone(),
                        caller_scope.clone(),
                        function_name.clone(),
                        None,
                        input_expression,
                    )?;

                    (identifier.name.clone(), input_value)
                }
                InputVariable::FunctionInput(input_model) => {
                    // First evaluate input expression
                    let mut input_value = self.enforce_function_input(
                        cs,
                        scope.clone(),
                        caller_scope.clone(),
                        function_name.clone(),
                        Some(input_model.type_.clone()),
                        input_expression,
                    )?;

                    if input_model.mutable {
                        input_value = ConstrainedValue::Mutable(Box::new(input_value))
                    }

                    (input_model.identifier.name.clone(), input_value)
                }
            };

            // Store input as variable with {function_name}_{input_name}
            let input_program_identifier = new_scope(function_name.clone(), name);
            self.store(input_program_identifier, value);
        }

        // Evaluate every statement in the function and save all potential results
        let mut results = vec![];

        for statement in function.statements.iter() {
            let mut result = self.enforce_statement(
                cs,
                scope.clone(),
                function_name.clone(),
                None,
                statement.clone(),
                function.returns.clone(),
            )?;

            results.append(&mut result);
        }

        // Conditionally select a result based on returned indicators
        let mut return_values = ConstrainedValue::Tuple(vec![]);

        Self::conditionally_select_result(cs, &mut return_values, results, function.span.clone())?;

        if let ConstrainedValue::Tuple(ref returns) = return_values {
            let return_types = match function.returns {
                Some(Type::Tuple(types)) => types.len(),
                Some(_) => 1usize,
                None => 0usize,
            };

            if return_types != returns.len() {
                return Err(FunctionError::return_arguments_length(
                    return_types,
                    returns.len(),
                    function.span.clone(),
                ));
            }
        }

        Ok(return_values)
    }
}