leer/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
//! Trait to abstract over types that have a notion of “being empty” and can
//! create such an empty instance. See [`Empty`]. Intended to be a foundational
//! crate.
//!
//!
//! ## Examples
//!
//! Using the trait:
//!
//! ```
//! use leer::Empty;
//!
//! let v = String::empty();
//! ```
//!
//! Mostly useful for something like this:
//!
//! ```
//! use leer::Empty;
//!
//! // Of course, in this specific case, `FromIterator` would be better. But
//! // you get the point.
//! fn one_two_three<C: Empty + Extend<u32>>() -> C {
//!     let mut out = C::empty();
//!     out.extend([1, 2, 3]);
//!     out
//! }
//!
//! let vec: Vec<_> = one_two_three();
//! let vec: std::collections::LinkedList<_> = one_two_three();
//! ```
//!
//! ## Crate features
//!
//! - `derive`: if enabled, you can `#[derive(Empty)]` for structs.
//!

/// Types that have a notion of “being empty” and can create such an empty
/// instance.
///
/// This is very similar to `Default` from the standard library, but makes it
/// explicit that the returned instance is *empty* and not just any default
/// instance. This trait is implemented for several standard types.
pub trait Empty {
    /// Returns an empty value of this type.
    fn empty() -> Self;
}

/// Derive macro for [`Empty`].
///
/// This can only be derived for structs. All struct fields need to implement
/// `Empty` in order for the derive to work. If your struct has generic
/// parameters, they won't be bounded with `Empty` in the generated impl block.
/// This is useful most of the time, because things like `Vec<T>` and
/// `Option<T>` don't require `T: Empty` to implement `Empty`. But this means
/// that you sometimes have to add a global `Empty` bound to your parameter or
/// implement `Empty` manually.
///
/// ## Examples
///
/// ```
/// use leer::Empty;
///
/// #[derive(Empty)]
/// struct Zoo {
///     foxes: Vec<Fox>,
///     elephants: Vec<Elephant>,
/// }
///
/// struct Fox;
/// struct Elephant;
///
///
/// let empty_zoo = Zoo::empty();
/// ```
///
///
/// ```
/// use leer::Empty;
///
/// #[derive(Empty)]
/// struct MyStruct {
///     a: Vec<u32>,        // => `vec![]`
///     b: Option<String>,  // => `None`
///     c: (),              // => `()`
/// }
/// ```
#[cfg(feature = "derive")]
pub use leer_macros::Empty;


// ===========================================================================
// ===== Implementations
// ===========================================================================
macro_rules! impl_empty_via_default {
    ($( { $($impl_header:tt)+ } ,)*) => {
        $(
            $($impl_header)* {
                fn empty() -> Self {
                    Self::default()
                }
            }
        )*
    }
}

impl_empty_via_default!(
    { impl Empty for () },
    { impl<T: ?Sized> Empty for std::marker::PhantomData<T> },
    { impl<T> Empty for Option<T> },
    { impl Empty for String },
    { impl<T> Empty for Vec<T> },
    { impl<T: Ord> Empty for std::collections::BTreeSet<T> },
    { impl<T: Eq + std::hash::Hash> Empty for std::collections::HashSet<T> },
    { impl<T> Empty for std::collections::LinkedList<T> },
    { impl<T> Empty for std::collections::VecDeque<T> },
    { impl<K: Ord, V> Empty for std::collections::BTreeMap<K, V> },
    { impl<K: Eq + std::hash::Hash, V> Empty for std::collections::HashMap<K, V> },
);

impl<T: Empty> Empty for Box<T> {
    fn empty() -> Self {
        Box::new(T::empty())
    }
}

impl<A: Empty> Empty for (A,) {
    fn empty() -> Self { (A::empty(),) }
}
impl<A: Empty, B: Empty> Empty for (A, B) {
    fn empty() -> Self { (A::empty(), B::empty()) }
}
impl<A: Empty, B: Empty, C: Empty> Empty for (A, B, C) {
    fn empty() -> Self { (A::empty(), B::empty(), C::empty()) }
}
impl<A: Empty, B: Empty, C: Empty, D: Empty> Empty for (A, B, C, D) {
    fn empty() -> Self { (A::empty(), B::empty(), C::empty(), D::empty()) }
}

impl<T: Empty, const N: usize> Empty for [T; N] {
    fn empty() -> Self {
        std::array::from_fn(|_| T::empty())
    }
}