Expand description
§Lebedev–Laikov quadrature
Approximates surface integrals over the sphere as:
∫ f(Ω) dΩ = ∫ f(θ, φ) sin(θ) dθ dφ ≈ 4 π ∑ₖ wₖ f(xₖ, yₖ, zₖ)
Note that the weights are normalized such that they sum to one.
§Reference
V. I. Lebedev, and D. N. Laikov, “A quadrature formula for the sphere of the 131st algebraic order of accuracy,” Doklady Mathematics, 59 (3), 477-481 (1999). http://rad.chem.msu.ru/~laikov/ru/DAN_366_741.pdf
Modules§
Constants§
- NS
- The list of numbers of nodes supported by this quadrature scheme.