1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
//! Processors for dual-axis input values

use std::hash::{Hash, Hasher};

use bevy::{
    math::FloatOrd,
    prelude::{BVec2, Reflect, Vec2},
};
use serde::{Deserialize, Serialize};

use crate::input_processing::AxisProcessor;

pub use self::circle::*;
pub use self::custom::*;
pub use self::range::*;

mod circle;
mod custom;
mod range;

/// A processor for dual-axis input values,
/// accepting a [`Vec2`] input and producing a [`Vec2`] output.
#[must_use]
#[non_exhaustive]
#[derive(Debug, Clone, PartialEq, Eq, Hash, Reflect, Serialize, Deserialize)]
pub enum DualAxisProcessor {
    /// Converts input values into three discrete values along each axis,
    /// similar to [`Vec2::signum()`] but returning `0.0` for zero values.
    ///
    /// ```rust
    /// use bevy::prelude::*;
    /// use leafwing_input_manager::prelude::*;
    ///
    /// // 1.0 for positive values
    /// assert_eq!(DualAxisProcessor::Digital.process(Vec2::splat(2.5)), Vec2::ONE);
    /// assert_eq!(DualAxisProcessor::Digital.process(Vec2::splat(0.5)), Vec2::ONE);
    ///
    /// // 0.0 for zero values
    /// assert_eq!(DualAxisProcessor::Digital.process(Vec2::ZERO), Vec2::ZERO);
    /// assert_eq!(DualAxisProcessor::Digital.process(-Vec2::ZERO), Vec2::ZERO);
    ///
    /// // -1.0 for negative values
    /// assert_eq!(DualAxisProcessor::Digital.process(Vec2::splat(-0.5)), Vec2::NEG_ONE);
    /// assert_eq!(DualAxisProcessor::Digital.process(Vec2::splat(-2.5)), Vec2::NEG_ONE);
    ///
    /// // Mixed digital values
    /// assert_eq!(DualAxisProcessor::Digital.process(Vec2::new(0.5, -0.5)), Vec2::new(1.0, -1.0));
    /// assert_eq!(DualAxisProcessor::Digital.process(Vec2::new(-0.5, 0.5)), Vec2::new(-1.0, 1.0));
    /// ```
    Digital,

    /// A wrapper around [`DualAxisInverted`] to represent inversion.
    Inverted(DualAxisInverted),

    /// A wrapper around [`DualAxisSensitivity`] to represent sensitivity.
    Sensitivity(DualAxisSensitivity),

    /// A wrapper around [`DualAxisBounds`] to represent value bounds.
    ValueBounds(DualAxisBounds),

    /// A wrapper around [`DualAxisExclusion`] to represent unscaled deadzone.
    Exclusion(DualAxisExclusion),

    /// A wrapper around [`DualAxisDeadZone`] to represent scaled deadzone.
    DeadZone(DualAxisDeadZone),

    /// A wrapper around [`CircleBounds`] to represent circular value bounds.
    CircleBounds(CircleBounds),

    /// A wrapper around [`CircleExclusion`] to represent unscaled deadzone.
    CircleExclusion(CircleExclusion),

    /// A wrapper around [`CircleDeadZone`] to represent scaled deadzone.
    CircleDeadZone(CircleDeadZone),

    /// A user-defined processor that implements [`CustomDualAxisProcessor`].
    Custom(Box<dyn CustomDualAxisProcessor>),
}

impl DualAxisProcessor {
    /// Computes the result by processing the `input_value`.
    #[must_use]
    #[inline]
    pub fn process(&self, input_value: Vec2) -> Vec2 {
        match self {
            Self::Digital => Vec2::new(
                AxisProcessor::Digital.process(input_value.x),
                AxisProcessor::Digital.process(input_value.y),
            ),
            Self::Inverted(inversion) => inversion.invert(input_value),
            Self::Sensitivity(sensitivity) => sensitivity.scale(input_value),
            Self::ValueBounds(bounds) => bounds.clamp(input_value),
            Self::Exclusion(exclusion) => exclusion.exclude(input_value),
            Self::DeadZone(deadzone) => deadzone.normalize(input_value),
            Self::CircleBounds(bounds) => bounds.clamp(input_value),
            Self::CircleExclusion(exclusion) => exclusion.exclude(input_value),
            Self::CircleDeadZone(deadzone) => deadzone.normalize(input_value),
            Self::Custom(processor) => processor.process(input_value),
        }
    }
}

/// Provides methods for configuring and manipulating the processing pipeline for dual-axis input.
pub trait WithDualAxisProcessingPipelineExt: Sized {
    /// Resets the processing pipeline, removing any currently applied processors.
    fn reset_processing_pipeline(self) -> Self;

    /// Replaces the current processing pipeline with the given [`DualAxisProcessor`]s.
    fn replace_processing_pipeline(
        self,
        processors: impl IntoIterator<Item = DualAxisProcessor>,
    ) -> Self;

    /// Appends the given [`DualAxisProcessor`] as the next processing step.
    fn with_processor(self, processor: impl Into<DualAxisProcessor>) -> Self;

    /// Appends an [`DualAxisProcessor::Digital`] processor as the next processing step,
    /// similar to [`Vec2::signum`] but returning `0.0` for zero values.
    #[inline]
    fn digital(self) -> Self {
        self.with_processor(DualAxisProcessor::Digital)
    }

    /// Appends a [`DualAxisInverted::ALL`] processor as the next processing step,
    /// flipping the sign of values on both axes.
    #[inline]
    fn inverted(self) -> Self {
        self.with_processor(DualAxisInverted::ALL)
    }

    /// Appends a [`DualAxisInverted::ONLY_X`] processor as the next processing step,
    /// only flipping the sign of the X-axis values.
    #[inline]
    fn inverted_x(self) -> Self {
        self.with_processor(DualAxisInverted::ONLY_X)
    }

    /// Appends a [`DualAxisInverted::ONLY_Y`] processor as the next processing step,
    /// only flipping the sign of the Y-axis values.
    #[inline]
    fn inverted_y(self) -> Self {
        self.with_processor(DualAxisInverted::ONLY_Y)
    }

    /// Appends a [`DualAxisSensitivity`] processor as the next processing step,
    /// multiplying values on both axes with the given sensitivity factor.
    #[inline]
    fn sensitivity(self, sensitivity: f32) -> Self {
        self.with_processor(DualAxisSensitivity::all(sensitivity))
    }

    /// Appends a [`DualAxisSensitivity`] processor as the next processing step,
    /// only multiplying the X-axis values with the given sensitivity factor.
    #[inline]
    fn sensitivity_x(self, sensitivity: f32) -> Self {
        self.with_processor(DualAxisSensitivity::only_x(sensitivity))
    }

    /// Appends a [`DualAxisSensitivity`] processor as the next processing step,
    /// only multiplying the Y-axis values with the given sensitivity factor.
    #[inline]
    fn sensitivity_y(self, sensitivity: f32) -> Self {
        self.with_processor(DualAxisSensitivity::only_y(sensitivity))
    }

    /// Appends a [`DualAxisBounds`] processor as the next processing step,
    /// restricting values within the same range `[min, max]` on both axes.
    #[inline]
    fn with_bounds(self, min: f32, max: f32) -> Self {
        self.with_processor(DualAxisBounds::all(min, max))
    }

    /// Appends a [`DualAxisBounds`] processor as the next processing step,
    /// restricting values within the same range `[-threshold, threshold]` on both axes.
    #[inline]
    fn with_bounds_symmetric(self, threshold: f32) -> Self {
        self.with_processor(DualAxisBounds::symmetric_all(threshold))
    }

    /// Appends a [`DualAxisBounds`] processor as the next processing step,
    /// only restricting values within the range `[min, max]` on the X-axis.
    #[inline]
    fn with_bounds_x(self, min: f32, max: f32) -> Self {
        self.with_processor(DualAxisBounds::only_x(min, max))
    }

    /// Appends a [`DualAxisBounds`] processor as the next processing step,
    /// restricting values within the range `[-threshold, threshold]` on the X-axis.
    #[inline]
    fn with_bounds_x_symmetric(self, threshold: f32) -> Self {
        self.with_processor(DualAxisBounds::symmetric_all(threshold))
    }

    /// Appends a [`DualAxisBounds`] processor as the next processing step,
    /// only restricting values within the range `[min, max]` on the Y-axis.
    #[inline]
    fn with_bounds_y(self, min: f32, max: f32) -> Self {
        self.with_processor(DualAxisBounds::only_y(min, max))
    }

    /// Appends a [`DualAxisBounds`] processor as the next processing step,
    /// restricting values within the range `[-threshold, threshold]` on the Y-axis.
    #[inline]
    fn with_bounds_y_symmetric(self, threshold: f32) -> Self {
        self.with_processor(DualAxisBounds::symmetric_all(threshold))
    }

    /// Appends a [`CircleBounds`] processor as the next processing step,
    /// restricting values to a `max` magnitude.
    #[inline]
    fn with_circle_bounds(self, max: f32) -> Self {
        self.with_processor(CircleBounds::new(max))
    }

    /// Appends a [`DualAxisDeadZone`] processor as the next processing step,
    /// excluding values within the dead zone range `[min, max]` on both axes,
    /// treating them as zeros, then normalizing non-excluded input values into the "live zone",
    /// the remaining range within the [`DualAxisBounds::symmetric_all(1.0)`](DualAxisBounds::default)
    /// after dead zone exclusion.
    #[inline]
    fn with_deadzone(self, min: f32, max: f32) -> Self {
        self.with_processor(DualAxisDeadZone::all(min, max))
    }

    /// Appends a [`DualAxisDeadZone`] processor as the next processing step,
    /// excluding values within the dead zone range `[-threshold, threshold]` on both axes,
    /// treating them as zeros, then normalizing non-excluded input values into the "live zone",
    /// the remaining range within the [`DualAxisBounds::symmetric_all(1.0)`](DualAxisBounds::default)
    /// after dead zone exclusion.
    #[inline]
    fn with_deadzone_symmetric(self, threshold: f32) -> Self {
        self.with_processor(DualAxisDeadZone::symmetric_all(threshold))
    }

    /// Appends a [`DualAxisDeadZone`] processor as the next processing step,
    /// excluding values within the dead zone range `[min, max]` on the X-axis,
    /// treating them as zeros, then normalizing non-excluded input values into the "live zone",
    /// the remaining range within the [`DualAxisBounds::symmetric_all(1.0)`](DualAxisBounds::default)
    /// after dead zone exclusion.
    #[inline]
    fn with_deadzone_x(self, min: f32, max: f32) -> Self {
        self.with_processor(DualAxisDeadZone::only_x(min, max))
    }

    /// Appends a [`DualAxisDeadZone`] processor as the next processing step,
    /// excluding values within the dead zone range `[-threshold, threshold]` on the X-axis,
    /// treating them as zeros, then normalizing non-excluded input values into the "live zone",
    /// the remaining range within the [`DualAxisBounds::symmetric_all(1.0)`](DualAxisBounds::default)
    /// after dead zone exclusion.
    #[inline]
    fn with_deadzone_x_symmetric(self, threshold: f32) -> Self {
        self.with_processor(DualAxisDeadZone::symmetric_only_x(threshold))
    }

    /// Appends a [`DualAxisDeadZone`] processor as the next processing step,
    /// excluding values within the dead zone range `[min, max]` on the Y-axis,
    /// treating them as zeros, then normalizing non-excluded input values into the "live zone",
    /// the remaining range within the [`DualAxisBounds::symmetric_all(1.0)`](DualAxisBounds::default)
    /// after dead zone exclusion.
    #[inline]
    fn with_deadzone_y(self, min: f32, max: f32) -> Self {
        self.with_processor(DualAxisDeadZone::only_y(min, max))
    }

    /// Appends a [`DualAxisDeadZone`] processor as the next processing step,
    /// excluding values within the deadzone range `[-threshold, threshold]` on the Y-axis,
    /// treating them as zeros, then normalizing non-excluded input values into the "live zone",
    /// the remaining range within the [`DualAxisBounds::symmetric_all(1.0)`](DualAxisBounds::default)
    /// after dead zone exclusion.
    #[inline]
    fn with_deadzone_y_symmetric(self, threshold: f32) -> Self {
        self.with_processor(DualAxisDeadZone::symmetric_only_y(threshold))
    }

    /// Appends a [`CircleDeadZone`] processor as the next processing step,
    /// ignoring values below a `min` magnitude, treating them as zeros,
    /// then normalizing non-excluded input values into the "live zone",
    /// the remaining range within the [`CircleBounds::new(1.0)`](CircleBounds::default)
    /// after dead zone exclusion.
    #[inline]
    fn with_circle_deadzone(self, min: f32) -> Self {
        self.with_processor(CircleDeadZone::new(min))
    }

    /// Appends a [`DualAxisExclusion`] processor as the next processing step,
    /// ignoring values within the dead zone range `[min, max]` on both axes,
    /// treating them as zeros.
    #[inline]
    fn with_deadzone_unscaled(self, min: f32, max: f32) -> Self {
        self.with_processor(DualAxisExclusion::all(min, max))
    }

    /// Appends a [`DualAxisExclusion`] processor as the next processing step,
    /// ignoring values within the dead zone range `[-threshold, threshold]` on both axes,
    /// treating them as zeros.
    #[inline]
    fn with_deadzone_symmetric_unscaled(self, threshold: f32) -> Self {
        self.with_processor(DualAxisExclusion::symmetric_all(threshold))
    }

    /// Appends a [`DualAxisExclusion`] processor as the next processing step,
    /// only ignoring values within the dead zone range `[min, max]` on the X-axis,
    /// treating them as zeros.
    #[inline]
    fn with_deadzone_x_unscaled(self, min: f32, max: f32) -> Self {
        self.with_processor(DualAxisExclusion::only_x(min, max))
    }

    /// Appends a [`DualAxisExclusion`] processor as the next processing step,
    /// only ignoring values within the dead zone range `[-threshold, threshold]` on the X-axis,
    /// treating them as zeros.
    #[inline]
    fn with_deadzone_x_symmetric_unscaled(self, threshold: f32) -> Self {
        self.with_processor(DualAxisExclusion::symmetric_only_x(threshold))
    }

    /// Appends a [`DualAxisExclusion`] processor as the next processing step,
    /// only ignoring values within the dead zone range `[min, max]` on the Y-axis,
    /// treating them as zeros.
    #[inline]
    fn with_deadzone_y_unscaled(self, min: f32, max: f32) -> Self {
        self.with_processor(DualAxisExclusion::only_y(min, max))
    }

    /// Appends a [`DualAxisExclusion`] processor as the next processing step,
    /// only ignoring values within the dead zone range `[-threshold, threshold]` on the Y-axis,
    /// treating them as zeros.
    #[inline]
    fn with_deadzone_y_symmetric_unscaled(self, threshold: f32) -> Self {
        self.with_processor(DualAxisExclusion::symmetric_only_y(threshold))
    }

    /// Appends a [`CircleExclusion`] processor as the next processing step,
    /// ignoring values below a `min` magnitude, treating them as zeros.
    #[inline]
    fn with_circle_deadzone_unscaled(self, min: f32) -> Self {
        self.with_processor(CircleExclusion::new(min))
    }
}

/// Flips the sign of dual-axis input values, resulting in a directional reversal of control.
///
/// ```rust
/// use bevy::prelude::*;
/// use leafwing_input_manager::prelude::*;
///
/// let value = Vec2::new(1.5, 2.0);
/// let Vec2 { x, y } = value;
///
/// assert_eq!(DualAxisInverted::ALL.invert(value), -value);
/// assert_eq!(DualAxisInverted::ALL.invert(-value), value);
///
/// assert_eq!(DualAxisInverted::ONLY_X.invert(value), Vec2::new(-x, y));
/// assert_eq!(DualAxisInverted::ONLY_X.invert(-value), Vec2::new(x, -y));
///
/// assert_eq!(DualAxisInverted::ONLY_Y.invert(value), Vec2::new(x, -y));
/// assert_eq!(DualAxisInverted::ONLY_Y.invert(-value), Vec2::new(-x, y));
#[derive(Debug, Clone, Copy, PartialEq, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct DualAxisInverted(Vec2);

impl DualAxisInverted {
    /// The [`DualAxisInverted`] that inverts both axes.
    pub const ALL: Self = Self(Vec2::NEG_ONE);

    /// The [`DualAxisInverted`] that only inverts the X-axis inputs.
    pub const ONLY_X: Self = Self(Vec2::new(-1.0, 1.0));

    /// The [`DualAxisInverted`] that only inverts the Y-axis inputs.
    pub const ONLY_Y: Self = Self(Vec2::new(1.0, -1.0));

    /// Are inputs inverted on both axes?
    #[must_use]
    #[inline]
    pub fn inverted(&self) -> BVec2 {
        self.0.cmpeq(Vec2::NEG_ONE)
    }

    /// Multiples the `input_value` by the specified inversion vector.
    #[must_use]
    #[inline]
    pub fn invert(&self, input_value: Vec2) -> Vec2 {
        self.0 * input_value
    }
}

impl From<DualAxisInverted> for DualAxisProcessor {
    fn from(value: DualAxisInverted) -> Self {
        Self::Inverted(value)
    }
}

impl Eq for DualAxisInverted {}

impl Hash for DualAxisInverted {
    fn hash<H: Hasher>(&self, state: &mut H) {
        FloatOrd(self.0.x).hash(state);
        FloatOrd(self.0.y).hash(state);
    }
}

/// Scales dual-axis input values using a specified multiplier to fine-tune the responsiveness of control.
///
/// ```rust
/// use bevy::prelude::*;
/// use leafwing_input_manager::prelude::*;
///
/// let value = Vec2::new(1.5, 2.5);
/// let Vec2 { x, y } = value;
///
/// // Negated X and halved Y
/// let neg_x_half_y = DualAxisSensitivity::new(-1.0, 0.5);
/// assert_eq!(neg_x_half_y.scale(value).x, -x);
/// assert_eq!(neg_x_half_y.scale(value).y, 0.5 * y);
///
/// // Doubled X and doubled Y
/// let double = DualAxisSensitivity::all(2.0);
/// assert_eq!(double.scale(value), 2.0 * value);
///
/// // Halved X
/// let half_x = DualAxisSensitivity::only_x(0.5);
/// assert_eq!(half_x.scale(value).x, 0.5 * x);
/// assert_eq!(half_x.scale(value).y, y);
///
/// // Negated and doubled Y
/// let neg_double_y = DualAxisSensitivity::only_y(-2.0);
/// assert_eq!(neg_double_y.scale(value).x, x);
/// assert_eq!(neg_double_y.scale(value).y, -2.0 * y);
/// ```
#[derive(Debug, Clone, Copy, PartialEq, Reflect, Serialize, Deserialize)]
#[must_use]
pub struct DualAxisSensitivity(pub(crate) Vec2);

impl DualAxisSensitivity {
    /// Creates a [`DualAxisSensitivity`] with the given values for each axis separately.
    #[inline]
    pub const fn new(sensitivity_x: f32, sensitivity_y: f32) -> Self {
        Self(Vec2::new(sensitivity_x, sensitivity_y))
    }

    /// Creates a [`DualAxisSensitivity`] with the same value for both axes.
    #[inline]
    pub const fn all(sensitivity: f32) -> Self {
        Self::new(sensitivity, sensitivity)
    }

    /// Creates a [`DualAxisSensitivity`] that only affects the X-axis using the given value.
    #[inline]
    pub const fn only_x(sensitivity: f32) -> Self {
        Self::new(sensitivity, 1.0)
    }

    /// Creates a [`DualAxisSensitivity`] that only affects the Y-axis using the given value.
    #[inline]
    pub const fn only_y(sensitivity: f32) -> Self {
        Self::new(1.0, sensitivity)
    }

    /// Returns the sensitivity values.
    #[must_use]
    #[inline]
    pub fn sensitivities(&self) -> Vec2 {
        self.0
    }

    /// Multiples the `input_value` by the specified sensitivity vector.
    #[must_use]
    #[inline]
    pub fn scale(&self, input_value: Vec2) -> Vec2 {
        self.0 * input_value
    }
}

impl From<DualAxisSensitivity> for DualAxisProcessor {
    fn from(value: DualAxisSensitivity) -> Self {
        Self::Sensitivity(value)
    }
}

impl Eq for DualAxisSensitivity {}

impl Hash for DualAxisSensitivity {
    fn hash<H: Hasher>(&self, state: &mut H) {
        FloatOrd(self.0.x).hash(state);
        FloatOrd(self.0.y).hash(state);
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_dual_axis_inverted() {
        let all = DualAxisInverted::ALL;
        assert_eq!(all.inverted(), BVec2::TRUE);

        let only_x = DualAxisInverted::ONLY_X;
        assert_eq!(only_x.inverted(), BVec2::new(true, false));

        let only_y = DualAxisInverted::ONLY_Y;
        assert_eq!(only_y.inverted(), BVec2::new(false, true));

        for x in -300..300 {
            let x = x as f32 * 0.01;

            for y in -300..300 {
                let y = y as f32 * 0.01;
                let value = Vec2::new(x, y);

                let processor = DualAxisProcessor::Inverted(all);
                assert_eq!(DualAxisProcessor::from(all), processor);
                assert_eq!(processor.process(value), all.invert(value));
                assert_eq!(all.invert(value), -value);
                assert_eq!(all.invert(-value), value);

                let processor = DualAxisProcessor::Inverted(only_x);
                assert_eq!(DualAxisProcessor::from(only_x), processor);
                assert_eq!(processor.process(value), only_x.invert(value));
                assert_eq!(only_x.invert(value), Vec2::new(-x, y));
                assert_eq!(only_x.invert(-value), Vec2::new(x, -y));

                let processor = DualAxisProcessor::Inverted(only_y);
                assert_eq!(DualAxisProcessor::from(only_y), processor);
                assert_eq!(processor.process(value), only_y.invert(value));
                assert_eq!(only_y.invert(value), Vec2::new(x, -y));
                assert_eq!(only_y.invert(-value), Vec2::new(-x, y));
            }
        }
    }

    #[test]
    fn test_dual_axis_sensitivity() {
        for x in -300..300 {
            let x = x as f32 * 0.01;

            for y in -300..300 {
                let y = y as f32 * 0.01;
                let value = Vec2::new(x, y);

                let sensitivity = x;

                let all = DualAxisSensitivity::all(sensitivity);
                let processor = DualAxisProcessor::Sensitivity(all);
                assert_eq!(DualAxisProcessor::from(all), processor);
                assert_eq!(processor.process(value), all.scale(value));
                assert_eq!(all.sensitivities(), Vec2::splat(sensitivity));
                assert_eq!(all.scale(value), sensitivity * value);

                let only_x = DualAxisSensitivity::only_x(sensitivity);
                let processor = DualAxisProcessor::Sensitivity(only_x);
                assert_eq!(DualAxisProcessor::from(only_x), processor);
                assert_eq!(processor.process(value), only_x.scale(value));
                assert_eq!(only_x.sensitivities(), Vec2::new(sensitivity, 1.0));
                assert_eq!(only_x.scale(value).x, x * sensitivity);
                assert_eq!(only_x.scale(value).y, y);

                let only_y = DualAxisSensitivity::only_y(sensitivity);
                let processor = DualAxisProcessor::Sensitivity(only_y);
                assert_eq!(DualAxisProcessor::from(only_y), processor);
                assert_eq!(processor.process(value), only_y.scale(value));
                assert_eq!(only_y.sensitivities(), Vec2::new(1.0, sensitivity));
                assert_eq!(only_y.scale(value).x, x);
                assert_eq!(only_y.scale(value).y, y * sensitivity);

                let sensitivity2 = y;
                let separate = DualAxisSensitivity::new(sensitivity, sensitivity2);
                let processor = DualAxisProcessor::Sensitivity(separate);
                assert_eq!(DualAxisProcessor::from(separate), processor);
                assert_eq!(processor.process(value), separate.scale(value));
                assert_eq!(
                    separate.sensitivities(),
                    Vec2::new(sensitivity, sensitivity2)
                );
                assert_eq!(separate.scale(value).x, x * sensitivity);
                assert_eq!(separate.scale(value).y, y * sensitivity2);
            }
        }
    }
}