1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
//! Tools for working with directional axis-like user inputs (gamesticks, D-Pads and emulated equivalents)
use crate::buttonlike::{MouseMotionDirection, MouseWheelDirection};
use crate::orientation::{Direction, Rotation};
use crate::prelude::QwertyScanCode;
use crate::user_input::InputKind;
use bevy::input::{
gamepad::{GamepadAxisType, GamepadButtonType},
keyboard::KeyCode,
};
use bevy::math::Vec2;
use bevy::reflect::Reflect;
use bevy::utils::FloatOrd;
use serde::{Deserialize, Serialize};
/// A single directional axis with a configurable trigger zone.
///
/// These can be stored in a [`InputKind`] to create a virtual button.
///
/// # Warning
///
/// `positive_low` must be greater than or equal to `negative_low` for this type to be validly constructed.
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct SingleAxis {
/// The axis that is being checked.
pub axis_type: AxisType,
/// Any axis value higher than this will trigger the input.
pub positive_low: f32,
/// Any axis value lower than this will trigger the input.
pub negative_low: f32,
/// Whether to invert output values from this axis.
pub inverted: bool,
/// How sensitive the axis is to input values.
///
/// Since sensitivity is a multiplier, any value `>1.0` will increase sensitivity while any value `<1.0` will decrease sensitivity.
/// This value should always be strictly positive: a value of 0 will cause the axis to stop functioning,
/// while negative values will invert the direction.
pub sensitivity: f32,
/// The target value for this input, used for input mocking.
///
/// WARNING: this field is ignored for the sake of [`Eq`] and [`Hash`](std::hash::Hash)
pub value: Option<f32>,
}
impl SingleAxis {
/// Creates a [`SingleAxis`] with both `positive_low` and `negative_low` set to `threshold`.
#[must_use]
pub fn symmetric(axis_type: impl Into<AxisType>, threshold: f32) -> SingleAxis {
SingleAxis {
axis_type: axis_type.into(),
positive_low: threshold,
negative_low: -threshold,
inverted: false,
sensitivity: 1.0,
value: None,
}
}
/// Creates a [`SingleAxis`] with the specified `axis_type` and `value`.
///
/// All thresholds are set to 0.0.
/// Primarily useful for [input mocking](crate::input_mocking).
#[must_use]
pub fn from_value(axis_type: impl Into<AxisType>, value: f32) -> SingleAxis {
SingleAxis {
axis_type: axis_type.into(),
positive_low: 0.0,
negative_low: 0.0,
inverted: false,
sensitivity: 1.0,
value: Some(value),
}
}
/// Creates a [`SingleAxis`] corresponding to horizontal [`MouseWheel`](bevy::input::mouse::MouseWheel) movement
#[must_use]
pub const fn mouse_wheel_x() -> SingleAxis {
SingleAxis {
axis_type: AxisType::MouseWheel(MouseWheelAxisType::X),
positive_low: 0.,
negative_low: 0.,
inverted: false,
sensitivity: 1.0,
value: None,
}
}
/// Creates a [`SingleAxis`] corresponding to vertical [`MouseWheel`](bevy::input::mouse::MouseWheel) movement
#[must_use]
pub const fn mouse_wheel_y() -> SingleAxis {
SingleAxis {
axis_type: AxisType::MouseWheel(MouseWheelAxisType::Y),
positive_low: 0.,
negative_low: 0.,
inverted: false,
sensitivity: 1.0,
value: None,
}
}
/// Creates a [`SingleAxis`] corresponding to horizontal [`MouseMotion`](bevy::input::mouse::MouseMotion) movement
#[must_use]
pub const fn mouse_motion_x() -> SingleAxis {
SingleAxis {
axis_type: AxisType::MouseMotion(MouseMotionAxisType::X),
positive_low: 0.,
negative_low: 0.,
inverted: false,
sensitivity: 1.0,
value: None,
}
}
/// Creates a [`SingleAxis`] corresponding to vertical [`MouseMotion`](bevy::input::mouse::MouseMotion) movement
#[must_use]
pub const fn mouse_motion_y() -> SingleAxis {
SingleAxis {
axis_type: AxisType::MouseMotion(MouseMotionAxisType::Y),
positive_low: 0.,
negative_low: 0.,
inverted: false,
sensitivity: 1.0,
value: None,
}
}
/// Creates a [`SingleAxis`] with the `axis_type` and `negative_low` set to `threshold`.
///
/// Positive values will not trigger the input.
pub fn negative_only(axis_type: impl Into<AxisType>, threshold: f32) -> SingleAxis {
SingleAxis {
axis_type: axis_type.into(),
negative_low: threshold,
positive_low: f32::MAX,
inverted: false,
sensitivity: 1.0,
value: None,
}
}
/// Creates a [`SingleAxis`] with the `axis_type` and `positive_low` set to `threshold`.
///
/// Negative values will not trigger the input.
pub fn positive_only(axis_type: impl Into<AxisType>, threshold: f32) -> SingleAxis {
SingleAxis {
axis_type: axis_type.into(),
negative_low: f32::MIN,
positive_low: threshold,
inverted: false,
sensitivity: 1.0,
value: None,
}
}
/// Returns this [`SingleAxis`] with the deadzone set to the specified value
#[must_use]
pub fn with_deadzone(mut self, deadzone: f32) -> SingleAxis {
self.negative_low = -deadzone;
self.positive_low = deadzone;
self
}
/// Returns this [`SingleAxis`] with the sensitivity set to the specified value
#[must_use]
pub fn with_sensitivity(mut self, sensitivity: f32) -> SingleAxis {
self.sensitivity = sensitivity;
self
}
/// Returns this [`SingleAxis`] inverted.
#[must_use]
pub fn inverted(mut self) -> Self {
self.inverted = !self.inverted;
self
}
}
impl PartialEq for SingleAxis {
fn eq(&self, other: &Self) -> bool {
self.axis_type == other.axis_type
&& FloatOrd(self.positive_low) == FloatOrd(other.positive_low)
&& FloatOrd(self.negative_low) == FloatOrd(other.negative_low)
&& FloatOrd(self.sensitivity) == FloatOrd(other.sensitivity)
}
}
impl Eq for SingleAxis {}
impl std::hash::Hash for SingleAxis {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.axis_type.hash(state);
FloatOrd(self.positive_low).hash(state);
FloatOrd(self.negative_low).hash(state);
FloatOrd(self.sensitivity).hash(state);
}
}
/// Two directional axes combined as one input.
///
/// These can be stored in a [`VirtualDPad`], which is itself stored in an [`InputKind`] for consumption.
///
/// This input will generate a [`DualAxis`] which can be read with
/// [`ActionState::axis_pair`][crate::action_state::ActionState::axis_pair].
///
/// # Warning
///
/// `positive_low` must be greater than or equal to `negative_low` for both `x` and `y` for this type to be validly constructed.
#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq, Eq, Hash)]
pub struct DualAxis {
/// The axis representing horizontal movement.
pub x: SingleAxis,
/// The axis representing vertical movement.
pub y: SingleAxis,
/// The shape of the deadzone
pub deadzone: DeadZoneShape,
}
impl DualAxis {
/// The default size of the deadzone used by constructor methods.
///
/// This cannot be changed, but the struct can be easily manually constructed.
pub const DEFAULT_DEADZONE: f32 = 0.1;
/// The default shape of the deadzone used by constructor methods.
///
/// This cannot be changed, but the struct can be easily manually constructed.
pub const DEFAULT_DEADZONE_SHAPE: DeadZoneShape = DeadZoneShape::Ellipse {
radius_x: Self::DEFAULT_DEADZONE,
radius_y: Self::DEFAULT_DEADZONE,
};
/// Creates a [`DualAxis`] with both `positive_low` and `negative_low` in both axes set to `threshold` with a `deadzone_shape`.
#[must_use]
pub fn symmetric(
x_axis_type: impl Into<AxisType>,
y_axis_type: impl Into<AxisType>,
deadzone_shape: DeadZoneShape,
) -> DualAxis {
DualAxis {
x: SingleAxis::symmetric(x_axis_type, 0.0),
y: SingleAxis::symmetric(y_axis_type, 0.0),
deadzone: deadzone_shape,
}
}
/// Creates a [`SingleAxis`] with the specified `axis_type` and `value`.
///
/// All thresholds are set to 0.0.
/// Primarily useful for [input mocking](crate::input_mocking).
#[must_use]
pub fn from_value(
x_axis_type: impl Into<AxisType>,
y_axis_type: impl Into<AxisType>,
x_value: f32,
y_value: f32,
) -> DualAxis {
DualAxis {
x: SingleAxis::from_value(x_axis_type, x_value),
y: SingleAxis::from_value(y_axis_type, y_value),
deadzone: Self::DEFAULT_DEADZONE_SHAPE,
}
}
/// Creates a [`DualAxis`] for the left analogue stick of the gamepad.
#[must_use]
pub fn left_stick() -> DualAxis {
DualAxis::symmetric(
GamepadAxisType::LeftStickX,
GamepadAxisType::LeftStickY,
Self::DEFAULT_DEADZONE_SHAPE,
)
}
/// Creates a [`DualAxis`] for the right analogue stick of the gamepad.
#[must_use]
pub fn right_stick() -> DualAxis {
DualAxis::symmetric(
GamepadAxisType::RightStickX,
GamepadAxisType::RightStickY,
Self::DEFAULT_DEADZONE_SHAPE,
)
}
/// Creates a [`DualAxis`] corresponding to horizontal and vertical [`MouseWheel`](bevy::input::mouse::MouseWheel) movement
pub const fn mouse_wheel() -> DualAxis {
DualAxis {
x: SingleAxis::mouse_wheel_x(),
y: SingleAxis::mouse_wheel_y(),
deadzone: Self::DEFAULT_DEADZONE_SHAPE,
}
}
/// Creates a [`DualAxis`] corresponding to horizontal and vertical [`MouseMotion`](bevy::input::mouse::MouseMotion) movement
pub const fn mouse_motion() -> DualAxis {
DualAxis {
x: SingleAxis::mouse_motion_x(),
y: SingleAxis::mouse_motion_y(),
deadzone: Self::DEFAULT_DEADZONE_SHAPE,
}
}
/// Returns this [`DualAxis`] with the deadzone set to the specified values and shape
#[must_use]
pub fn with_deadzone(mut self, deadzone: DeadZoneShape) -> DualAxis {
self.deadzone = deadzone;
self
}
/// Returns this [`DualAxis`] with the sensitivity set to the specified values
#[must_use]
pub fn with_sensitivity(mut self, x_sensitivity: f32, y_sensitivity: f32) -> DualAxis {
self.x.sensitivity = x_sensitivity;
self.y.sensitivity = y_sensitivity;
self
}
/// Returns this [`DualAxis`] with an inverted X-axis.
#[must_use]
pub fn inverted_x(mut self) -> DualAxis {
self.x = self.x.inverted();
self
}
/// Returns this [`DualAxis`] with an inverted Y-axis.
#[must_use]
pub fn inverted_y(mut self) -> DualAxis {
self.y = self.y.inverted();
self
}
/// Returns this [`DualAxis`] with both axes inverted.
#[must_use]
pub fn inverted(mut self) -> DualAxis {
self.x = self.x.inverted();
self.y = self.y.inverted();
self
}
}
#[allow(clippy::doc_markdown)] // False alarm because it thinks DPad is an un-quoted item
/// A virtual DPad that you can get an [`DualAxis`] from.
///
/// Typically, you don't want to store a [`DualAxis`] in this type,
/// even though it can be stored as an [`InputKind`].
///
/// Instead, use it directly as [`InputKind::DualAxis`]!
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct VirtualDPad {
/// The input that represents the up direction in this virtual DPad
pub up: InputKind,
/// The input that represents the down direction in this virtual DPad
pub down: InputKind,
/// The input that represents the left direction in this virtual DPad
pub left: InputKind,
/// The input that represents the right direction in this virtual DPad
pub right: InputKind,
}
impl VirtualDPad {
/// Generates a [`VirtualDPad`] corresponding to the arrow keyboard keycodes
pub fn arrow_keys() -> VirtualDPad {
VirtualDPad {
up: InputKind::Keyboard(KeyCode::Up),
down: InputKind::Keyboard(KeyCode::Down),
left: InputKind::Keyboard(KeyCode::Left),
right: InputKind::Keyboard(KeyCode::Right),
}
}
/// Generates a [`VirtualDPad`] corresponding to the `WASD` keys on the standard US QWERTY layout.
///
/// Note that on other keyboard layouts, different keys need to be pressed.
/// The _location_ of the keys is the same on all keyboard layouts.
/// This ensures that the classic triangular shape is retained on all layouts,
/// which enables comfortable movement controls.
pub fn wasd() -> VirtualDPad {
VirtualDPad {
up: InputKind::KeyLocation(QwertyScanCode::W.into()),
down: InputKind::KeyLocation(QwertyScanCode::S.into()),
left: InputKind::KeyLocation(QwertyScanCode::A.into()),
right: InputKind::KeyLocation(QwertyScanCode::D.into()),
}
}
#[allow(clippy::doc_markdown)] // False alarm because it thinks DPad is an un-quoted item
/// Generates a [`VirtualDPad`] corresponding to the DPad on a gamepad
pub fn dpad() -> VirtualDPad {
VirtualDPad {
up: InputKind::GamepadButton(GamepadButtonType::DPadUp),
down: InputKind::GamepadButton(GamepadButtonType::DPadDown),
left: InputKind::GamepadButton(GamepadButtonType::DPadLeft),
right: InputKind::GamepadButton(GamepadButtonType::DPadRight),
}
}
/// Generates a [`VirtualDPad`] corresponding to the face buttons on a gamepad
///
/// North corresponds to up, west corresponds to left, east corresponds to right, south corresponds to down
pub fn gamepad_face_buttons() -> VirtualDPad {
VirtualDPad {
up: InputKind::GamepadButton(GamepadButtonType::North),
down: InputKind::GamepadButton(GamepadButtonType::South),
left: InputKind::GamepadButton(GamepadButtonType::West),
right: InputKind::GamepadButton(GamepadButtonType::East),
}
}
/// Generates a [`VirtualDPad`] corresponding to discretized mousewheel movements
pub fn mouse_wheel() -> VirtualDPad {
VirtualDPad {
up: InputKind::MouseWheel(MouseWheelDirection::Up),
down: InputKind::MouseWheel(MouseWheelDirection::Down),
left: InputKind::MouseWheel(MouseWheelDirection::Left),
right: InputKind::MouseWheel(MouseWheelDirection::Right),
}
}
/// Generates a [`VirtualDPad`] corresponding to discretized mouse motions
pub fn mouse_motion() -> VirtualDPad {
VirtualDPad {
up: InputKind::MouseMotion(MouseMotionDirection::Up),
down: InputKind::MouseMotion(MouseMotionDirection::Down),
left: InputKind::MouseMotion(MouseMotionDirection::Left),
right: InputKind::MouseMotion(MouseMotionDirection::Right),
}
}
/// Returns this [`VirtualDPad`] but with `up` and `down` swapped.
pub fn inverted_y(mut self) -> Self {
std::mem::swap(&mut self.up, &mut self.down);
self
}
/// Returns this [`VirtualDPad`] but with `left` and `right` swapped.
pub fn inverted_x(mut self) -> Self {
std::mem::swap(&mut self.left, &mut self.right);
self
}
/// Returns this [`VirtualDPad`] but with inverted inputs.
pub fn inverted(mut self) -> Self {
std::mem::swap(&mut self.up, &mut self.down);
std::mem::swap(&mut self.left, &mut self.right);
self
}
}
/// A virtual Axis that you can get a value between -1 and 1 from.
///
/// Typically, you don't want to store a [`SingleAxis`] in this type,
/// even though it can be stored as an [`InputKind`].
///
/// Instead, use it directly as [`InputKind::SingleAxis`]!
#[derive(Debug, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct VirtualAxis {
/// The input that represents the negative direction of this virtual axis
pub negative: InputKind,
/// The input that represents the positive direction of this virtual axis
pub positive: InputKind,
}
impl VirtualAxis {
/// Helper function for generating a [`VirtualAxis`] from arbitrary keycodes, shorthand for
/// wrapping each key in [`InputKind::Keyboard`]
pub fn from_keys(negative: KeyCode, positive: KeyCode) -> VirtualAxis {
VirtualAxis {
negative: InputKind::Keyboard(negative),
positive: InputKind::Keyboard(positive),
}
}
/// Generates a [`VirtualAxis`] corresponding to the horizontal arrow keyboard keycodes
pub fn horizontal_arrow_keys() -> VirtualAxis {
VirtualAxis::from_keys(KeyCode::Left, KeyCode::Right)
}
/// Generates a [`VirtualAxis`] corresponding to the horizontal arrow keyboard keycodes
pub fn vertical_arrow_keys() -> VirtualAxis {
VirtualAxis::from_keys(KeyCode::Down, KeyCode::Up)
}
/// Generates a [`VirtualAxis`] corresponding to the `AD` keyboard keycodes.
pub fn ad() -> VirtualAxis {
VirtualAxis::from_keys(KeyCode::A, KeyCode::D)
}
/// Generates a [`VirtualAxis`] corresponding to the `WS` keyboard keycodes.
pub fn ws() -> VirtualAxis {
VirtualAxis::from_keys(KeyCode::S, KeyCode::W)
}
#[allow(clippy::doc_markdown)]
/// Generates a [`VirtualAxis`] corresponding to the horizontal DPad buttons on a gamepad.
pub fn horizontal_dpad() -> VirtualAxis {
VirtualAxis {
negative: InputKind::GamepadButton(GamepadButtonType::DPadLeft),
positive: InputKind::GamepadButton(GamepadButtonType::DPadRight),
}
}
#[allow(clippy::doc_markdown)]
/// Generates a [`VirtualAxis`] corresponding to the vertical DPad buttons on a gamepad.
pub fn vertical_dpad() -> VirtualAxis {
VirtualAxis {
negative: InputKind::GamepadButton(GamepadButtonType::DPadDown),
positive: InputKind::GamepadButton(GamepadButtonType::DPadUp),
}
}
/// Returns this [`VirtualAxis`] but with flipped positive/negative inputs.
#[must_use]
pub fn inverted(mut self) -> Self {
std::mem::swap(&mut self.positive, &mut self.negative);
self
}
}
/// The type of axis used by a [`UserInput`](crate::user_input::UserInput).
///
/// This is stored in either a [`SingleAxis`] or [`DualAxis`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum AxisType {
/// Input associated with a gamepad, such as the triggers or one axis of an analog stick.
Gamepad(GamepadAxisType),
/// Input associated with a mouse wheel.
MouseWheel(MouseWheelAxisType),
/// Input associated with movement of the mouse
MouseMotion(MouseMotionAxisType),
}
/// The direction of motion of the mouse wheel.
///
/// Stored in the [`AxisType`] enum.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum MouseWheelAxisType {
/// Horizontal movement.
///
/// This is much less common than the `Y` variant, and is only supported on some devices.
X,
/// Vertical movement.
///
/// This is the standard behavior for a mouse wheel, used to scroll up and down pages.
Y,
}
/// The direction of motion of the mouse.
///
/// Stored in the [`AxisType`] enum.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum MouseMotionAxisType {
/// Horizontal movement.
X,
/// Vertical movement.
Y,
}
impl From<GamepadAxisType> for AxisType {
fn from(axis_type: GamepadAxisType) -> Self {
AxisType::Gamepad(axis_type)
}
}
impl From<MouseWheelAxisType> for AxisType {
fn from(axis_type: MouseWheelAxisType) -> Self {
AxisType::MouseWheel(axis_type)
}
}
impl From<MouseMotionAxisType> for AxisType {
fn from(axis_type: MouseMotionAxisType) -> Self {
AxisType::MouseMotion(axis_type)
}
}
impl TryFrom<AxisType> for GamepadAxisType {
type Error = AxisConversionError;
fn try_from(axis_type: AxisType) -> Result<Self, AxisConversionError> {
match axis_type {
AxisType::Gamepad(inner) => Ok(inner),
_ => Err(AxisConversionError),
}
}
}
impl TryFrom<AxisType> for MouseWheelAxisType {
type Error = AxisConversionError;
fn try_from(axis_type: AxisType) -> Result<Self, AxisConversionError> {
match axis_type {
AxisType::MouseWheel(inner) => Ok(inner),
_ => Err(AxisConversionError),
}
}
}
impl TryFrom<AxisType> for MouseMotionAxisType {
type Error = AxisConversionError;
fn try_from(axis_type: AxisType) -> Result<Self, AxisConversionError> {
match axis_type {
AxisType::MouseMotion(inner) => Ok(inner),
_ => Err(AxisConversionError),
}
}
}
/// An [`AxisType`] could not be converted into a more specialized variant
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct AxisConversionError;
/// A wrapped [`Vec2`] that represents the combination of two input axes.
///
/// The neutral origin is always at 0, 0.
/// When working with gamepad axes, both `x` and `y` values are bounded by [-1.0, 1.0].
/// For other input axes (such as mousewheel data), this may not be true!
///
/// This struct should store the processed form of your raw inputs in a device-agnostic fashion.
/// Any deadzone correction, rescaling or drift-correction should be done at an earlier level.
#[derive(Debug, Copy, Clone, PartialEq, Default, Deserialize, Serialize, Reflect)]
pub struct DualAxisData {
xy: Vec2,
}
// Constructors
impl DualAxisData {
/// Creates a new [`DualAxisData`] from the provided (x,y) coordinates
pub fn new(x: f32, y: f32) -> DualAxisData {
DualAxisData {
xy: Vec2::new(x, y),
}
}
/// Creates a new [`DualAxisData`] directly from a [`Vec2`]
pub fn from_xy(xy: Vec2) -> DualAxisData {
DualAxisData { xy }
}
/// Merge the state of this [`DualAxisData`] with another.
///
/// This is useful if you have multiple sticks bound to the same game action,
/// and you want to get their combined position.
///
/// # Warning
///
/// This method can result in values with a greater maximum magnitude than expected!
/// Use [`DualAxisData::clamp_length`] to limit the resulting direction.
pub fn merged_with(&self, other: DualAxisData) -> DualAxisData {
DualAxisData::from_xy(self.xy() + other.xy())
}
}
// Methods
impl DualAxisData {
/// The value along the x-axis, typically ranging from -1 to 1
#[must_use]
#[inline]
pub fn x(&self) -> f32 {
self.xy.x
}
/// The value along the y-axis, typically ranging from -1 to 1
#[must_use]
#[inline]
pub fn y(&self) -> f32 {
self.xy.y
}
/// The (x, y) values, each typically ranging from -1 to 1
#[must_use]
#[inline]
pub fn xy(&self) -> Vec2 {
self.xy
}
/// The [`Direction`] that this axis is pointing towards, if any
///
/// If the axis is neutral (x,y) = (0,0), a (0, 0) `None` will be returned
#[must_use]
#[inline]
pub fn direction(&self) -> Option<Direction> {
// TODO: replace this quick-n-dirty hack once Direction::new no longer panics
if self.xy.length() > 0.00001 {
return Some(Direction::new(self.xy));
}
None
}
/// The [`Rotation`] (measured clockwise from midnight) that this axis is pointing towards, if any
///
/// If the axis is neutral (x,y) = (0,0), this will be `None`
#[must_use]
#[inline]
pub fn rotation(&self) -> Option<Rotation> {
match Rotation::from_xy(self.xy) {
Ok(rotation) => Some(rotation),
Err(_) => None,
}
}
/// How far from the origin is this axis's position?
///
/// Typically bounded by 0 and 1.
///
/// If you only need to compare relative magnitudes, use `magnitude_squared` instead for faster computation.
#[must_use]
#[inline]
pub fn length(&self) -> f32 {
self.xy.length()
}
/// The square of the axis' magnitude
///
/// Typically bounded by 0 and 1.
///
/// This is faster than `magnitude`, as it avoids a square root, but will generally have less natural behavior.
#[must_use]
#[inline]
pub fn length_squared(&self) -> f32 {
self.xy.length_squared()
}
/// Clamps the magnitude of the axis
pub fn clamp_length(&mut self, max: f32) {
self.xy = self.xy.clamp_length_max(max);
}
}
impl From<DualAxisData> for Vec2 {
fn from(data: DualAxisData) -> Vec2 {
data.xy
}
}
/// The shape of the deadzone for a [`DualAxis`] input.
///
/// Input values that are on the boundary of the shape are counted as outside.
/// If a volume of a shape is 0, then all input values are read.
///
/// Deadzone values should be in the range `0.0..=1.0`.
#[derive(Debug, Clone, Copy, Serialize, Deserialize, PartialEq)]
pub enum DeadZoneShape {
/// Deadzone with the shape of a cross.
///
/// The cross is represented by two rectangles. When using [`DeadZoneShape::Cross`],
/// make sure rect_1 and rect_2 do not have the same values, otherwise the shape will be a rectangle
Cross {
/// The width of the first rectangle.
rect_1_width: f32,
/// The height of the first rectangle.
rect_1_height: f32,
/// The width of the second rectangle.
rect_2_width: f32,
/// The height of the second rectangle.
rect_2_height: f32,
},
/// Deadzone with the shape of a rectangle.
Rect {
/// The width of the rectangle.
width: f32,
/// The height of the rectangle.
height: f32,
},
/// Deadzone with the shape of an ellipse.
Ellipse {
/// The horizontal radius of the ellipse.
radius_x: f32,
/// The vertical radius of the ellipse.
radius_y: f32,
},
}
impl Eq for DeadZoneShape {}
impl std::hash::Hash for DeadZoneShape {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
match self {
DeadZoneShape::Cross {
rect_1_width,
rect_1_height,
rect_2_width,
rect_2_height,
} => {
FloatOrd(*rect_1_width).hash(state);
FloatOrd(*rect_1_height).hash(state);
FloatOrd(*rect_2_width).hash(state);
FloatOrd(*rect_2_height).hash(state);
}
DeadZoneShape::Rect { width, height } => {
FloatOrd(*width).hash(state);
FloatOrd(*height).hash(state);
}
DeadZoneShape::Ellipse { radius_x, radius_y } => {
FloatOrd(*radius_x).hash(state);
FloatOrd(*radius_y).hash(state);
}
}
}
}
impl DeadZoneShape {
/// Returns whether the (x, y) input is outside the deadzone.
pub fn input_outside_deadzone(&self, x: f32, y: f32) -> bool {
match self {
DeadZoneShape::Cross {
rect_1_width,
rect_1_height,
rect_2_width,
rect_2_height,
} => self.outside_cross(
x,
y,
*rect_1_width,
*rect_1_height,
*rect_2_width,
*rect_2_height,
),
DeadZoneShape::Rect { width, height } => self.outside_rectangle(x, y, *width, *height),
DeadZoneShape::Ellipse { radius_x, radius_y } => {
self.outside_ellipse(x, y, *radius_x, *radius_y)
}
}
}
/// Returns whether the (x, y) input is outside a cross.
fn outside_cross(
&self,
x: f32,
y: f32,
rect_1_width: f32,
rect_1_height: f32,
rect_2_width: f32,
rect_2_height: f32,
) -> bool {
self.outside_rectangle(x, y, rect_1_width, rect_1_height)
&& self.outside_rectangle(x, y, rect_2_width, rect_2_height)
}
/// Returns whether the (x, y) input is outside a rectangle.
fn outside_rectangle(&self, x: f32, y: f32, width: f32, height: f32) -> bool {
x >= width || x <= -width || y >= height || y <= -height
}
/// Returns whether the (x, y) input is outside an ellipse.
fn outside_ellipse(&self, x: f32, y: f32, radius_x: f32, radius_y: f32) -> bool {
if radius_x == 0.0 || radius_y == 0.0 {
return true;
}
((x / radius_x).powi(2) + (y / radius_y).powi(2)) >= 1.0
}
}