1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
//! # Sparse binary matrix representation and functions
//!
//! This module implements a representation for sparse binary matrices based on
//! the alist format used to handle LDPC parity check matrices.

use std::borrow::Borrow;
use std::slice::Iter;

mod bfs;
mod girth;

pub use bfs::BFSResults;

/// A [`String`] with an description of the error.
pub type Error = String;
/// A [`Result`] type containing an error [`String`].
pub type Result<T> = std::result::Result<T, Error>;

/// A sparse binary matrix
///
/// The internal representation for this matrix is based on the alist format.
#[derive(PartialEq, Eq, Debug, Clone)]
pub struct SparseMatrix {
    rows: Vec<Vec<usize>>,
    cols: Vec<Vec<usize>>,
}

impl SparseMatrix {
    /// Create a new sparse matrix of a given size
    ///
    /// The matrix is inizialized to the zero matrix.
    ///
    /// # Examples
    /// ```
    /// # use ldpc_toolbox::sparse::SparseMatrix;
    /// let h = SparseMatrix::new(10, 30);
    /// assert_eq!(h.num_rows(), 10);
    /// assert_eq!(h.num_cols(), 30);
    /// ```
    pub fn new(nrows: usize, ncols: usize) -> SparseMatrix {
        use std::iter::repeat_with;
        let rows = repeat_with(Vec::new).take(nrows).collect();
        let cols = repeat_with(Vec::new).take(ncols).collect();
        SparseMatrix { rows, cols }
    }

    /// Returns the number of rows of the matrix
    pub fn num_rows(&self) -> usize {
        self.rows.len()
    }

    /// Returns the number of columns of the matrix
    pub fn num_cols(&self) -> usize {
        self.cols.len()
    }

    /// Returns the row weight of `row`
    ///
    /// The row weight is defined as the number of entries equal to
    /// one in a particular row. Rows are indexed starting by zero.
    pub fn row_weight(&self, row: usize) -> usize {
        self.rows[row].len()
    }

    /// Returns the column weight of `column`
    ///
    /// The column weight is defined as the number of entries equal to
    /// one in a particular column. Columns are indexed starting by zero.
    pub fn col_weight(&self, col: usize) -> usize {
        self.cols[col].len()
    }

    /// Returns `true` if the entry corresponding to a particular
    /// row and column is a one
    pub fn contains(&self, row: usize, col: usize) -> bool {
        // typically columns are shorter, so we search in the column
        self.cols[col].contains(&row)
    }

    /// Inserts a one in a particular row and column.
    ///
    /// If there is already a one in this row and column, this function does
    /// nothing.
    ///
    /// # Examples
    /// ```
    /// # use ldpc_toolbox::sparse::SparseMatrix;
    /// let mut h = SparseMatrix::new(10, 30);
    /// assert!(!h.contains(3, 7));
    /// h.insert(3, 7);
    /// assert!(h.contains(3, 7));
    /// ```
    pub fn insert(&mut self, row: usize, col: usize) {
        if !self.contains(row, col) {
            self.rows[row].push(col);
            self.cols[col].push(row);
        }
    }

    /// Removes a one in a particular row and column.
    ///
    /// If there is no one in this row and column, this function does nothing.
    ///
    /// # Examples
    /// ```
    /// # use ldpc_toolbox::sparse::SparseMatrix;
    /// let mut h = SparseMatrix::new(10, 30);
    /// h.insert(3, 7);
    /// assert!(h.contains(3, 7));
    /// h.remove(3, 7);
    /// assert!(!h.contains(3, 7));
    /// ```
    pub fn remove(&mut self, row: usize, col: usize) {
        self.rows[row].retain(|&c| c != col);
        self.cols[col].retain(|&r| r != row);
    }

    /// Toggles the 0/1 in a particular row and column.
    ///
    /// If the row and column contains a zero, this function sets a one, and
    /// vice versa. This is useful to implement addition modulo 2.
    pub fn toggle(&mut self, row: usize, col: usize) {
        match self.contains(row, col) {
            true => self.remove(row, col),
            false => self.insert(row, col),
        }
    }

    /// Inserts ones in particular columns of a row
    ///
    /// This effect is as calling `insert()` on each of the elements
    /// of the iterator `cols`.
    ///
    /// # Examples
    /// ```
    /// # use ldpc_toolbox::sparse::SparseMatrix;
    /// let mut h1 = SparseMatrix::new(10, 30);
    /// let mut h2 = SparseMatrix::new(10, 30);
    /// let c = vec![3, 7, 9];
    /// h1.insert_row(0, c.iter());
    /// for a in &c {
    ///     h2.insert(0, *a);
    /// }
    /// assert_eq!(h1, h2);
    /// ```
    pub fn insert_row<T, S>(&mut self, row: usize, cols: T)
    where
        T: Iterator<Item = S>,
        S: Borrow<usize>,
    {
        for col in cols {
            self.insert(row, *col.borrow());
        }
    }

    /// Inserts ones in a particular rows of a column
    ///
    /// This works like `insert_row()`.
    pub fn insert_col<T, S>(&mut self, col: usize, rows: T)
    where
        T: Iterator<Item = S>,
        S: Borrow<usize>,
    {
        for row in rows {
            self.insert(*row.borrow(), col);
        }
    }

    /// Remove all the ones in a particular row
    pub fn clear_row(&mut self, row: usize) {
        for &col in &self.rows[row] {
            self.cols[col].retain(|r| *r != row);
        }
        self.rows[row].clear();
    }

    /// Remove all the ones in a particular column
    pub fn clear_col(&mut self, col: usize) {
        for &row in &self.cols[col] {
            self.rows[row].retain(|c| *c != col);
        }
        self.cols[col].clear();
    }

    /// Set the elements that are equal to one in a row
    ///
    /// The effect of this is like calling `clear_row()` followed
    /// by `insert_row()`.
    pub fn set_row<T, S>(&mut self, row: usize, cols: T)
    where
        T: Iterator<Item = S>,
        S: Borrow<usize>,
    {
        self.clear_row(row);
        self.insert_row(row, cols);
    }

    /// Set the elements that are equal to one in a column
    pub fn set_col<T, S>(&mut self, col: usize, rows: T)
    where
        T: Iterator<Item = S>,
        S: Borrow<usize>,
    {
        self.clear_col(col);
        self.insert_col(col, rows);
    }

    /// Returns an [Iterator] over the indices entries equal to one in all the
    /// matrix.
    pub fn iter_all(&self) -> impl Iterator<Item = (usize, usize)> + '_ {
        self.rows
            .iter()
            .enumerate()
            .flat_map(|(j, r)| r.iter().map(move |&k| (j, k)))
    }

    /// Returns an [Iterator] over the entries equal to one
    /// in a particular row
    pub fn iter_row(&self, row: usize) -> Iter<'_, usize> {
        self.rows[row].iter()
    }

    /// Returns an [Iterator] over the entries equal to one
    /// in a particular column
    pub fn iter_col(&self, col: usize) -> Iter<'_, usize> {
        self.cols[col].iter()
    }

    /// Writes the matrix in alist format to a writer
    ///
    /// # Errors
    /// If a call to `write!()` returns an error, this function returns
    /// such an error.
    pub fn write_alist<W: std::fmt::Write>(&self, w: &mut W) -> std::fmt::Result {
        writeln!(w, "{} {}", self.num_cols(), self.num_rows())?;
        let directions = [&self.cols, &self.rows];
        for dir in directions.iter() {
            write!(w, "{} ", dir.iter().map(|el| el.len()).max().unwrap_or(0))?;
        }
        writeln!(w)?;
        for dir in directions.iter() {
            for el in *dir {
                write!(w, "{} ", el.len())?;
            }
            writeln!(w)?;
        }
        for dir in directions.iter() {
            for el in *dir {
                let mut v = el.clone();
                v.sort_unstable();
                for x in &v {
                    write!(w, "{} ", x + 1)?;
                }
                writeln!(w)?;
            }
        }
        Ok(())
    }

    /// Returns a [`String`] with the alist representation of the matrix
    pub fn alist(&self) -> String {
        let mut s = String::new();
        self.write_alist(&mut s).unwrap();
        s
    }

    /// Constructs and returns a sparse matrix from its alist representation
    ///
    /// # Errors
    /// `alist` should hold a valid alist representation. If an error is found
    /// while parsing `alist`, a `String` describing the error will be returned.
    pub fn from_alist(alist: &str) -> Result<SparseMatrix> {
        let mut alist = alist.split('\n');
        let sizes = alist
            .next()
            .ok_or_else(|| String::from("alist first line not found"))?;
        let mut sizes = sizes.split_whitespace();
        let ncols = sizes
            .next()
            .ok_or_else(|| String::from("alist first line does not contain enough elements"))?
            .parse()
            .map_err(|_| String::from("ncols is not a number"))?;
        let nrows = sizes
            .next()
            .ok_or_else(|| String::from("alist first line does not contain enough elements"))?
            .parse()
            .map_err(|_| String::from("nrows is not a number"))?;
        let mut h = SparseMatrix::new(nrows, ncols);
        alist.next(); // skip max weights
        alist.next();
        alist.next(); // skip weights
        for col in 0..ncols {
            let col_data = alist
                .next()
                .ok_or_else(|| String::from("alist does not contain expected number of lines"))?;
            let col_data = col_data.split_whitespace();
            for row in col_data {
                let row: usize = row
                    .parse()
                    .map_err(|_| String::from("row value is not a number"))?;
                h.insert(row - 1, col);
            }
        }
        // we do not need to process the rows of the alist
        Ok(h)
    }

    /// Returns the girth of the bipartite graph defined by the matrix
    ///
    /// The girth is the length of the shortest cycle. If there are no
    /// cycles, `None` is returned.
    ///
    /// # Examples
    /// The following shows that a 2 x 2 matrix whose entries are all
    /// equal to one has a girth of 4, which is the smallest girth that
    /// a bipartite graph can have.
    /// ```
    /// # use ldpc_toolbox::sparse::SparseMatrix;
    /// let mut h = SparseMatrix::new(2, 2);
    /// for j in 0..2 {
    ///     for k in 0..2 {
    ///         h.insert(j, k);
    ///     }
    /// }
    /// assert_eq!(h.girth(), Some(4));
    /// ```
    pub fn girth(&self) -> Option<usize> {
        self.girth_with_max(usize::MAX)
    }

    /// Returns the girth of the bipartite graph defined by the matrix
    /// as long as it is smaller than a maximum
    ///
    /// By imposing a maximum value in the girth search algorithm,
    /// the execution time is reduced, since paths longer than the
    /// maximum do not need to be explored.
    ///
    /// Often it is only necessary to check that a graph has at least
    /// some minimum girth, so it is possible to use `girth_with_max()`.
    ///
    /// If there are no cycles with length smaller or equal to `max`, then
    /// `None` is returned.
    pub fn girth_with_max(&self, max: usize) -> Option<usize> {
        (0..self.num_cols())
            .filter_map(|c| self.girth_at_node_with_max(Node::Col(c), max))
            .min()
    }

    /// Returns the local girth at a particular node
    ///
    /// The local girth at a node of a graph is defined as the minimum
    /// length of the cycles containing that node.
    ///
    /// This function returns the local girth of at the node correponding
    /// to a column or row of the matrix, or `None` if there are no cycles containing
    /// that node.
    pub fn girth_at_node(&self, node: Node) -> Option<usize> {
        self.girth_at_node_with_max(node, usize::MAX)
    }

    /// Returns the girth at a particular node with a maximum
    ///
    /// This function works like `girth_at_node()` but imposes a maximum in the
    /// length of the cycles considered. `None` is returned if there are no
    /// cycles containing the node with length smaller or equal than `max`.
    pub fn girth_at_node_with_max(&self, node: Node, max: usize) -> Option<usize> {
        bfs::BFSContext::new(self, node).local_girth(max)
    }

    /// Run the BFS algorithm
    ///
    /// This uses a node of the graph associated to the matrix as the root
    /// for the BFS algorithm and finds the distances from each of the nodes
    /// of the graph to that root using breadth-first search.
    /// # Examples
    /// Run BFS on a matrix that has two connected components.
    /// ```
    /// # use ldpc_toolbox::sparse::SparseMatrix;
    /// # use ldpc_toolbox::sparse::Node;
    /// let mut h = SparseMatrix::new(4, 4);
    /// for j in 0..4 {
    ///     for k in 0..4 {
    ///         if (j % 2) == (k % 2) {
    ///             h.insert(j, k);
    ///         }
    ///     }
    /// }
    /// println!("{:?}", h.bfs(Node::Col(0)));
    /// ```
    pub fn bfs(&self, node: Node) -> BFSResults {
        bfs::BFSContext::new(self, node).bfs()
    }
}

/// A node in the graph associated to a sparse matrix
///
/// A node can represent a row or a column of the graph.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum Node {
    /// Node representing row number `n`
    Row(usize),
    /// Node representing column number `n`
    Col(usize),
}

impl Node {
    fn iter(self, h: &SparseMatrix) -> impl Iterator<Item = Node> + '_ {
        match self {
            Node::Row(n) => h.iter_row(n),
            Node::Col(n) => h.iter_col(n),
        }
        .map(move |&x| match self {
            Node::Row(_) => Node::Col(x),
            Node::Col(_) => Node::Row(x),
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_insert() {
        let mut h = SparseMatrix::new(100, 300);
        assert!(!h.contains(27, 154));
        h.insert(27, 154);
        assert!(h.contains(27, 154));
        assert!(!h.contains(28, 154));
    }

    #[test]
    fn test_insert_twice() {
        let mut h = SparseMatrix::new(100, 300);
        h.insert(27, 154);
        h.insert(43, 28);
        h.insert(53, 135);
        let h2 = h.clone();
        h.insert(43, 28);
        assert_eq!(h, h2);
    }

    #[test]
    fn iter_all() {
        use std::collections::HashSet;

        let mut h = SparseMatrix::new(10, 20);
        let entries = [
            (7, 8),
            (5, 14),
            (6, 6),
            (6, 7),
            (8, 10),
            (0, 4),
            (0, 0),
            (0, 15),
        ];
        for entry in &entries {
            h.insert(entry.0, entry.1);
        }
        let result = h.iter_all().collect::<HashSet<_>>();
        assert_eq!(result, HashSet::from(entries));
    }

    #[test]
    fn test_alist() {
        let mut h = SparseMatrix::new(4, 12);
        for j in 0..4 {
            h.insert(j, j);
            h.insert(j, j + 4);
            h.insert(j, j + 8);
        }
        let expected = "12 4
1 3 
1 1 1 1 1 1 1 1 1 1 1 1 
3 3 3 3 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 5 9 
2 6 10 
3 7 11 
4 8 12 
";
        assert_eq!(h.alist(), expected);

        let h2 = SparseMatrix::from_alist(expected).unwrap();
        assert_eq!(h2.alist(), expected);
    }
}