1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
use bitstream_io::write::BitWriter;
use bitstream_io::{BigEndian, Numeric, SignedNumeric};
use pest::iterators::Pair;
use std::io::Result as IOResult;
use std::io::Write;
use std::num::ParseIntError;

pub fn parse_number_literal(s: &str) -> Result<i64, ParseIntError> {
    s.parse().or_else(|_| match s.chars().nth(0) {
        Some('#') => s[1..].parse(),
        Some('x') | Some('X') => i64::from_str_radix(&s[1..], 16),
        _ => panic!("Invalid decimal literal {} received", s),
    })
}

pub fn parse_register_literal(s: &str) -> Result<i64, ParseIntError> {
    match s.to_ascii_lowercase().chars().nth(0) {
        Some('r') => i64::from_str_radix(&s[1..], 16),
        _ => panic!("Invalid register literal {} received", s),
    }
}

pub enum PCOffsetTarget {
    Symbol(String),
    ExplicitOffset(i64),
}

pub fn parse_pc_pair(target_pair: &Pair<super::Rule>) -> PCOffsetTarget {
    let pair_str = target_pair.as_str();

    match pair_str.parse() {
        Ok(offset) => PCOffsetTarget::ExplicitOffset(offset), // TODO: Determine whether this is allowed
        Err(_) => match pair_str.chars().nth(0) {
            Some('#') => PCOffsetTarget::ExplicitOffset(pair_str[1..].parse().unwrap()),
            _ => PCOffsetTarget::Symbol(pair_str.to_owned()),
        },
    }
}

/// Wrapper struct for [BitWriter] which extends some functionality
/// e.g. counting total bytes written without consuming itself.
pub struct BitVecWriter<W>
where
    W: Write,
{
    wr: BitWriter<W, BigEndian>,
    bits_pushed: u32,
}

impl<W> BitVecWriter<W>
where
    W: Write,
{
    pub fn new(wr: W) -> Self {
        BitVecWriter {
            wr: BitWriter::new(wr),
            bits_pushed: 0,
        }
    }

    /// Wrapping method for [BitWriter::write]
    pub fn write<U>(&mut self, bits: u32, value: U) -> IOResult<()>
    where
        U: Numeric,
    {
        self.wr.write(bits, value).map(|_| {
            self.bits_pushed += bits;
        })
    }

    /// Wrapping method for [BitWriter::write]
    pub fn write_signed<S>(&mut self, bits: u32, value: S) -> IOResult<()>
    where
        S: SignedNumeric,
    {
        self.wr.write_signed(bits, value).map(|_| {
            self.bits_pushed += bits;
        })
    }

    /// Wrapping method for [BitWriter::write_bit]
    pub fn write_bit(&mut self, bit: bool) -> IOResult<()> {
        self.wr.write_bit(bit).map(|_| {
            self.bits_pushed += 1;
        })
    }

    /// Returns a pair of `(bytes_written, remaining_bits_count)`
    pub fn count_written(&self) -> (u32, u8) {
        (self.bits_pushed / 8, (self.bits_pushed % 8) as u8)
    }

    pub fn into_inner(self) -> BitWriter<W, BigEndian> {
        self.wr
    }
}

#[macro_export]
macro_rules! collect_inner {
    ($pair:expr) => {
        &$pair.into_inner().collect::<Vec<_>>()[..]
    };
}

#[macro_export]
macro_rules! pair_error_message {
    ($pair:expr, $($arg:tt)*) => {
        PestError::new_from_span(
            PestErrorVariant::<Rule>::CustomError {
                message: format!($($arg)*)
            },
            $pair.as_span()
        )
    };
}

#[macro_export]
macro_rules! write_fields {
    ($wr:expr) => {};

    ($wr:expr $(,[$($more:tt)+])*,) => {
        write_fields!($wr $(,[$($more)+])*);
    };

    ($wr:expr, [const; $bits:expr, $value:expr] $(,[$($more:tt)+])*) => {
        $wr.write($bits, $value)?;
        write_fields!($wr $(,[$($more)+])*);
    };

    ($wr:expr, [bool; $value:expr] $(,[$($more:tt)+])*) => {
        $wr.write_bit($value)?;
        write_fields!($wr $(,[$($more)+])*);
    };

    ($wr:expr, [number $name:ident; $bits:expr, $pair:expr] $(,[$($more:tt)+])*) => {
        let $name = util::parse_number_literal($pair.as_str())?;
        write_fields!($wr,
            [$name; $bits, $pair, $name]
            $(,[$($more)+])*,
        );
    };

    ($wr:expr, [number_signed $name:ident; $bits:expr, $pair:expr] $(,[$($more:tt)+])*) => {
        let $name = util::parse_number_literal($pair.as_str())?;
        write_fields!($wr,
            [signed $name; $bits, $pair, $name]
            $(,[$($more)+])*,
        );
    };

    ($wr:expr, [register $name:ident; $pair:expr] $(,[$($more:tt)+])*) => {
        let $name = util::parse_register_literal($pair.as_str())?;
        write_fields!($wr,
            [$name; 3, $pair, $name]
            $(,[$($more)+])*,
        );
    };

    ($wr:expr, [pcoffset; $bits:expr, $pair:expr, $table:expr] $(,[$($more:tt)+])*) => {
        let _current_offset = ($wr.count_written().0-2) / 2;
        match util::parse_pc_pair($pair) {
            util::PCOffsetTarget::Symbol(_sym) => {
                if let Some((_offset, _)) = $table.get(&_sym) {
                    write_fields!(
                        $wr,
                        [signed pc_offset; $bits, $pair, *_offset as i32 - _current_offset as i32 - 1],
                    );
                } else {
                    return Err(pair_error_message!(
                        $pair,
                        "Cannot find symbol {}, available symbols: {}",
                        _sym,
                        $table.keys().map(String::to_owned).collect::<Vec<_>>().join(", "),
                    ).into())
                }
            },
            util::PCOffsetTarget::ExplicitOffset(_offset) => {
                write_fields!($wr, [signed pc_offset; $bits, $pair, _offset]);
            }
        }
        write_fields!($wr $(,[$($more)+])*);
    };

    ($wr:expr, [$name:ident; $bits:expr, $pair:expr, $value:expr] $(,[$($more:tt)+])*) => {
        write_fields!($wr, [$name; $bits, $pair, $value, write] $(,[$($more)+])*);
    };

    ($wr:expr, [signed $name:ident; $bits:expr, $pair:expr, $value:expr] $(,[$($more:tt)+])*) => {
        write_fields!($wr, [$name; $bits, $pair, $value, write_signed] $(,[$($more)+])*);
    };

    ($wr:expr,
        [$name:ident; $bits:expr, $pair:expr, $value:expr, $func:ident]
        $(,[$($more:tt)+])*) => {
        $wr.$func($bits, $value).map_err(|e| -> Error {
            if e.kind() == IOErrorKind::InvalidInput {
                pair_error_message!(
                    $pair,
                    "Value {} overflows for given field {}",
                    $value,
                    stringify!($name)
                )
                .into()
            } else {
                e.into()
            }
        })?;
        write_fields!($wr $(,[$($more)+])*);
    };
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_bitvecwriter() {
        let mut buf = Vec::new();
        let mut bvw = BitVecWriter::new(&mut buf);
        bvw.write(8, 3).unwrap();
        assert_eq!(bvw.count_written(), (1, 0));
        bvw.write(3, 5).unwrap();
        assert_eq!(bvw.count_written(), (1, 3));
        bvw.write_bit(true).unwrap();
        bvw.write(4, 5).unwrap();
        assert_eq!(bvw.count_written(), (2, 0));
        assert_eq!(bvw.into_inner().into_writer(), &[3, 0b1011_0101]);
    }

    #[test]
    fn test_bvw_overflow() {
        let mut buf = Vec::new();
        let mut bvw = BitVecWriter::new(&mut buf);
        bvw.write(4, 16).unwrap_err();
    }
}