lc3_ensemble/
parse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
//! Parsing assembly source code into an AST.
//! 
//! This module is used to convert strings (which represent assembly source code)
//! into abstract syntax trees that maintain all of the information of the source code
//! in an easier to handle format.
//! 
//! The main function to use from this module is [`parse_ast`], 
//! which parses an assembly code program into an AST.
//! 
//! However, if needed, the internals of this module are also available:
//! - [`lex`]: the implementation of the lexer/tokenizer
//! - [`Parser`]: the main logic for the parser
//! - [`Parse`]: the implementation to "parse" an AST component

pub mod lex;

use std::borrow::Cow;
use std::ops::Range;

use logos::{Logos, Span};

use crate::ast::asm::{AsmInstr, Directive, Stmt, StmtKind};
use crate::ast::{ImmOrReg, Offset, OffsetNewErr, PCOffset};
use lex::{Ident, Token};
use simple::*;

use self::lex::LexErr;

/// Parses an assembly source code string into a `Vec` of statements.
/// 
/// # Example
/// ```
/// use lc3_ensemble::parse::parse_ast;
/// 
/// let src = "
///     .orig x3000
///     THIS: ADD R0, R0, #0
///     IS: ADD R1, R1, #1
///     A: ADD R2, R2, #2
///     PROGRAM: ADD R3, R3, #3
///     .end
/// ";
/// 
/// let ast = parse_ast(src).unwrap();
/// assert_eq!(ast.len(), 6);
/// ```
pub fn parse_ast(s: &str) -> Result<Vec<Stmt>, ParseErr> {
    let mut parser = Parser::new(s)?;
    // Horrendous one-liner version of this:
    // std::iter::from_fn(|| (!parser.is_empty()).then(|| parser.parse())).collect()
    std::iter::from_fn(|| match parser.is_empty() {
        true  => None,
        false => Some(parser.parse()),
    }).collect::<Result<Vec<_>, _>>()
}

enum ParseErrKind {
    OffsetNew(OffsetNewErr),
    Lex(LexErr),
    Parse(Cow<'static, str>)
}
impl From<LexErr> for ParseErrKind {
    fn from(value: LexErr) -> Self {
        Self::Lex(value)
    }
}
impl From<OffsetNewErr> for ParseErrKind {
    fn from(value: OffsetNewErr) -> Self {
        Self::OffsetNew(value)
    }
}
/// Any error that occurs during parsing tokens.
pub struct ParseErr {
    /// The brief cause of this error.
    kind: ParseErrKind,
    /// Some kind of help (if it exists)
    help: Cow<'static, str>,
    /// The location of this error.
    span: Span
}
impl ParseErr {
    fn new<S: Into<Cow<'static, str>>>(msg: S, span: Span) -> Self {
        Self { kind: ParseErrKind::Parse(msg.into()), help: Cow::Borrowed(""), span }
    }

    fn wrap<E: Into<ParseErrKind>>(err: E, span: Span) -> Self {
        Self { kind: err.into(), help: Cow::Borrowed(""), span }
    }

    fn with_help<S: Into<Cow<'static, str>>>(mut self, help: S) -> Self {
        self.help = help.into();
        self
    }
}
impl std::fmt::Debug for ParseErr {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ParseErr")
            .field("brief", match &self.kind {
                ParseErrKind::OffsetNew(s) => s,
                ParseErrKind::Lex(s) => s,
                ParseErrKind::Parse(s) => s,
            })
            .field("span", &self.span)
            .finish()
    }
}
impl std::fmt::Display for ParseErr {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match &self.kind {
            ParseErrKind::OffsetNew(e) => e.fmt(f),
            ParseErrKind::Lex(e) => e.fmt(f),
            ParseErrKind::Parse(s) => s.fmt(f),
        }
    }
}
impl std::error::Error for ParseErr {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        match &self.kind {
            ParseErrKind::OffsetNew(e) => Some(e),
            ParseErrKind::Lex(e) => Some(e),
            ParseErrKind::Parse(_) => None,
        }
    }
}
impl crate::err::Error for ParseErr {
    fn span(&self) -> Option<crate::err::ErrSpan> {
        Some(crate::err::ErrSpan::from(self.span.clone()))
    }
        
    fn help(&self) -> Option<Cow<str>> {
        match &self.kind {
            ParseErrKind::OffsetNew(e) => e.help(),
            ParseErrKind::Lex(e) => e.help(),
            ParseErrKind::Parse(_) => Some(Cow::Borrowed(&self.help)),
        }
    }
}

/// Components that can be constructed from a sequence of tokens.
pub trait Parse: Sized {
    /// Attempt to convert the next sequence of tokens 
    /// in the parser's state into a component.
    /// 
    /// If parsing fails, there are no guarantees about what happens to the input,
    /// and the parser likely should not be used after an error is raised during parsing.
    fn parse(parser: &mut Parser) -> Result<Self, ParseErr>;
}

/// The main parser struct, which holds the main logic for the parser.
pub struct Parser {
    tokens: Vec<(Token, Span)>,
    index: usize,
    spans: Vec<Span>,
}
impl Parser {
    /// Creates a new parser from a given string.
    /// 
    /// In the instantiation process, 
    /// this function will attempt to tokenize the string into tokens,
    /// raising an error if it fails.
    pub fn new(stream: &str) -> Result<Self, ParseErr> {
        let tokens = Token::lexer(stream).spanned()
            .map(|(m_token, span)| match m_token {
                Ok(token) => Ok((token, span)),
                Err(err)  => Err(ParseErr::wrap(err, span)),
            })
            .filter(|t| !matches!(t, Ok((Token::Comment, _)))) // filter comments
            .collect::<Result<_, _>>()?;

        Ok(Self { tokens, index: 0, spans: vec![] })
    }

    /// Peeks at the next token to read.
    pub fn peek(&self) -> Option<&(Token, Span)> {
        self.tokens[self.index..].first()
    }
    /// Advances the parser ahead by one token.
    pub fn advance(&mut self) {
        // Append the last token's span to the last span collector.
        let last_tok_span = self.cursor();
        if let Some(last_span) = self.spans.last_mut() {
            last_span.end = last_tok_span.end;
        }

        self.index += 1;
        self.index = self.index.min(self.tokens.len());
    }
    /// Gets the range of the next token to read (or an EOL range if there are no more tokens to read).
    pub fn cursor(&self) -> Span {
        match self.peek().or_else(|| self.tokens.last()) {
            Some((_, span)) => span.clone(),
            None => 0..0
        }
    }

    /// Parses the current token stream into a component, erroring if not possible.
    /// 
    /// If parsing fails, there are no guarantees about what happens to the input,
    /// and the parser likely should not be used after an error is raised during parsing.
    pub fn parse<P: Parse>(&mut self) -> Result<P, ParseErr> {
        P::parse(self)
    }

    /// Check if the next token matches the given component and consume it if so.
    /// 
    /// This function can error if the next token *does* match the given component,
    /// but an error occurs in trying to convert it to that component.
    pub fn match_<P: TokenParse>(&mut self) -> Result<Option<P>, ParseErr> {
        let span = self.cursor();
        match self.advance_if(P::match_) {
            Ok(t)  => P::convert(t, span).map(Some),
            Err(_) => Ok(None),
        }
    }

    /// Applies the provided predicate to the next token in the input.
    /// 
    /// If an error is raised from the predicate, the parser does not advance its input.
    pub fn advance_if<T>(&mut self, pred: impl FnOnce(Option<&Token>, Span) -> Result<T, ParseErr>) -> Result<T, ParseErr> {
        let result = if let Some((tok, span)) = self.peek() {
            pred(Some(tok), span.clone())
        } else {
            pred(None, self.cursor())
        };
        if result.is_ok() {
            self.advance();
        }
        result
    }

    /// Calculates the span of the component created inside this region block.
    pub fn spanned<T, E>(&mut self, f: impl FnOnce(&mut Parser) -> Result<T, E>) -> Result<(T, Range<usize>), E> {
        let Range { start, end: _ } = self.cursor();
        
        self.spans.push(start..start);
        let result = f(self);

        // pop span
        let span = self.spans.pop().unwrap();
        if let Some(last_span) = self.spans.last_mut() {
            last_span.end = span.end;
        }

        Ok((result?, span))
    }

    /// Checks whether the input for the parser is empty.
    pub fn is_empty(&self) -> bool {
        self.tokens[self.index..]
            .iter()
            .all(|(t, _)| t.is_whitespace())
    }
}

impl<const N: u32> Parse for ImmOrReg<N> {
    fn parse(parser: &mut Parser) -> Result<Self, ParseErr> {
        match parser.match_()? {
            Some(Either::Left(imm))  => Ok(ImmOrReg::Imm(imm)),
            Some(Either::Right(reg)) => Ok(ImmOrReg::Reg(reg)),
            None => Err(ParseErr::new("expected register or immediate value", parser.cursor()))
        }
    }
}

impl<OFF, const N: u32> Parse for PCOffset<OFF, N> 
    where Offset<OFF, N>: TokenParse
{
    fn parse(parser: &mut Parser) -> Result<Self, ParseErr> {
        match parser.match_()? {
            Some(Either::Left(off)) => Ok(PCOffset::Offset(off)),
            Some(Either::Right(label)) => Ok(PCOffset::Label(label)),
            None => Err(ParseErr::new("expected offset or label", parser.cursor()))
        }
    }
}

/// Simple to parse components.
/// 
/// This module holds components that are very simple to parse
/// (defined as only requiring a single token and no additional state from the parser).
/// 
/// The key type of this module is the [`TokenParse`] trait which defines
/// how to "simply parse" a component. 
/// See that trait for more details about its utility over [`Parse`].
/// 
/// This module also provides several utility parsers (e.g., [`Comma`] and [`Colon`])
/// for use in more complex component parsing.
pub mod simple {
    use logos::Span;

    use crate::ast::{Label, Offset, Reg};

    use super::lex::{Ident, LexErr, Token};
    use super::{Parse, ParseErr, Parser};

    /// Components that can be constructed with a single token 
    /// and require no additional parser state.
    /// 
    /// This has an advantage over [`Parse`] in that if parsing fails,
    /// the parser is known to not advance its input. 
    /// This can be taken advantage of with [`Parser::match_`], 
    /// which only advances if parsing passes.
    /// 
    /// [`Parser::match_`]: super::Parser::match_
    pub trait TokenParse: Sized {
        /// An intermediate to hold the match before it is converted to the actual component.
        type Intermediate;

        /// Tries to match the next token to the given component, if possible.
        /// 
        /// If successful, this returns some value and the parser advances. 
        /// If unsuccessful, this returns an error and the parser does not advance.
        /// 
        /// The value returned is an intermediate value which is later converted to the desired component.
        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self::Intermediate, ParseErr>;

        /// Parses the intermediate into the given component, raising an error if conversion fails.
        fn convert(imed: Self::Intermediate, span: Span) -> Result<Self, ParseErr>;
    }
    impl<S: TokenParse> Parse for S {
        fn parse(parser: &mut Parser) -> Result<Self, ParseErr> {
            let span = parser.cursor();
            let imed = parser.advance_if(S::match_)?;
            S::convert(imed, span)
        }
    }
    trait DirectTokenParse: TokenParse<Intermediate = Self> {
        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self, ParseErr>;
    }
    impl<T: DirectTokenParse> TokenParse for T {
        type Intermediate = Self;
    
        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self::Intermediate, ParseErr> {
            DirectTokenParse::match_(m_token, span)
        }
    
        fn convert(imed: Self::Intermediate, _span: Span) -> Result<Self, ParseErr> {
            Ok(imed)
        }
    }

    /// Comma.
    #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Default)]
    pub struct Comma;
    impl DirectTokenParse for Comma {
        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self::Intermediate, ParseErr> {
            match m_token {
                Some(Token::Comma) => Ok(Comma),
                _ => Err(ParseErr::new("expected comma", span))
            }
        }
    }

    /// Colon.
    #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Default)]
    pub struct Colon;
    impl DirectTokenParse for Colon {
        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self, ParseErr> {
            match m_token {
                Some(Token::Colon) => Ok(Colon),
                _ => Err(ParseErr::new("expected colon", span))
            }
        }
    }

    /// A string literal.
    #[derive(Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Default)]
    pub struct StrLiteral(pub String);
    impl DirectTokenParse for StrLiteral {
        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self, ParseErr> {
            match m_token {
                Some(Token::String(s)) => Ok(StrLiteral(s.to_string())),
                _ => Err(ParseErr::new("expected string literal", span))
            }
        }
    }

    /// The end of a line or input.
    #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Default)]
    pub struct End;
    impl DirectTokenParse for End {
        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self, ParseErr> {
            match m_token {
                None | Some(Token::NewLine) => Ok(End),
                _ => Err(ParseErr::new("expected end of line", span))
            }
        }
    }

    /// An (signed or unsigned) int literal. 
    /// This is primarily only used for `.fill`, which is sign-agnostic.
    #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Default)]
    pub struct IntLiteral(pub u16);
    impl DirectTokenParse for IntLiteral {
        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self, ParseErr> {
            match m_token {
                Some(&Token::Unsigned(n)) => Ok(Self(n)),
                Some(&Token::Signed(n)) => Ok(Self(n as u16)),
                _ => Err(ParseErr::new("expected immediate value", span.clone()))
            }
        }
    }

    /// Either one component or another.
    /// 
    /// This is not meant to be used as a general purpose Either type.
    /// It is only meant to be used for parsing.
    pub enum Either<L, R> {
        /// The first possible component.
        Left(L),
        /// The second possible component.
        Right(R)
    }
    impl<L: TokenParse, R: TokenParse> TokenParse for Either<L, R> {
        type Intermediate = Either<L::Intermediate, R::Intermediate>;
        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self::Intermediate, ParseErr> {
            match L::match_(m_token, span.clone()) {
                Ok(t) => Ok(Either::Left(t)),
                Err(_) => match R::match_(m_token, span.clone()) {
                    Ok(u) => Ok(Either::Right(u)),
                    Err(_) => Err(ParseErr::new("could not parse", span)),
                },
            }
        }
        
        fn convert(imed: Self::Intermediate, span: Span) -> Result<Self, ParseErr> {
            match imed {
                Either::Left(l)  => L::convert(l, span).map(Either::Left),
                Either::Right(r) => R::convert(r, span).map(Either::Right),
            }
        }
    }

    impl DirectTokenParse for Reg {
        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self, ParseErr> {
            match m_token {
                Some(&Token::Reg(reg_no)) => Reg::try_from(reg_no)
                    .map_err(|_| ParseErr::new(format!("invalid register number {reg_no}"), span)),
                _ => Err(ParseErr::new("expected register", span))
            }
        }
    }

    impl<const N: u32> TokenParse for Offset<i16, N> {
        type Intermediate = Either<i16, u16>;

        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self::Intermediate, ParseErr> {
            match m_token {
                Some(&Token::Unsigned(n)) => Ok(Either::Right(n)),
                Some(&Token::Signed(n))   => Ok(Either::Left(n)),
                _ => Err(ParseErr::new("expected immediate value", span.clone()))
            }
        }
        
        fn convert(imed: Self::Intermediate, span: Span) -> Result<Self, ParseErr> {
            let off_val = match imed {
                Either::Left(n)  => n,
                Either::Right(n) => {
                    <_>::try_from(n).map_err(|_| ParseErr::wrap(LexErr::DoesNotFitI16, span.clone()))?
                },
            };
            
            Self::new(off_val)
                .map_err(|s| ParseErr::wrap(s, span))
        }
    }

    impl<const N: u32> TokenParse for Offset<u16, N> {
        type Intermediate = Either<u16, i16>;

        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self::Intermediate, ParseErr> {
            match m_token {
                Some(&Token::Unsigned(n)) => Ok(Either::Left(n)),
                Some(&Token::Signed(n))   => Ok(Either::Right(n)),
                _ => Err(ParseErr::new("expected immediate value", span.clone()))
            }
        }
        
        fn convert(imed: Self::Intermediate, span: Span) -> Result<Self, ParseErr> {
            let off_val = match imed {
                Either::Left(n)  => n,
                Either::Right(n) => {
                    <_>::try_from(n).map_err(|_| ParseErr::wrap(LexErr::DoesNotFitU16, span.clone()))?
                },
            };
            
            Self::new(off_val)
                .map_err(|s| ParseErr::wrap(s, span))
        }
    }
    impl DirectTokenParse for Label {
        fn match_(m_token: Option<&Token>, span: Span) -> Result<Self, ParseErr> {
            match m_token {
                Some(Token::Ident(Ident::Label(s))) => Ok(Label::new(s.to_string(), span)),
                _ => Err(ParseErr::new("expected label", span))
            }
        }
    }
}

impl Parse for AsmInstr {
    fn parse(parser: &mut Parser) -> Result<Self, ParseErr> {
        let opcode = parser.advance_if(|mt, span| match mt {
            Some(Token::Ident(id)) if !matches!(id, Ident::Label(_)) => Ok(id.clone()),
            _ => Err(ParseErr::new("expected instruction", span))
        })?;

        match opcode {
            Ident::ADD => {
                let dr = parser.parse()?;
                parser.parse::<Comma>()?;
                let sr1 = parser.parse()?;
                parser.parse::<Comma>()?;
                let sr2 = parser.parse()?;

                Ok(Self::ADD(dr, sr1, sr2))
            },
            Ident::AND => {
                let dr = parser.parse()?;
                parser.parse::<Comma>()?;
                let sr1 = parser.parse()?;
                parser.parse::<Comma>()?;
                let sr2 = parser.parse()?;

                Ok(Self::AND(dr, sr1, sr2))
            },
            Ident::BR => Ok(Self::BR(0b111, parser.parse()?)),
            Ident::BRP => Ok(Self::BR(0b001, parser.parse()?)),
            Ident::BRZ => Ok(Self::BR(0b010, parser.parse()?)),
            Ident::BRZP => Ok(Self::BR(0b011, parser.parse()?)),
            Ident::BRN => Ok(Self::BR(0b100, parser.parse()?)),
            Ident::BRNP => Ok(Self::BR(0b101, parser.parse()?)),
            Ident::BRNZ => Ok(Self::BR(0b110, parser.parse()?)),
            Ident::BRNZP => Ok(Self::BR(0b111, parser.parse()?)),
            Ident::JMP => Ok(Self::JMP(parser.parse()?)),
            Ident::JSR => Ok(Self::JSR(parser.parse()?)),
            Ident::JSRR => Ok(Self::JSRR(parser.parse()?)),
            Ident::LD => {
                let dr = parser.parse()?;
                parser.parse::<Comma>()?;
                let off = parser.parse()?;

                Ok(Self::LD(dr, off))
            },
            Ident::LDI => {
                let dr = parser.parse()?;
                parser.parse::<Comma>()?;
                let off = parser.parse()?;

                Ok(Self::LDI(dr, off))
            },
            Ident::LDR => {
                let dr = parser.parse()?;
                parser.parse::<Comma>()?;
                let br = parser.parse()?;
                parser.parse::<Comma>()?;
                let off = parser.parse()?;

                Ok(Self::LDR(dr, br, off))
            },
            Ident::LEA => {
                let dr = parser.parse()?;
                parser.parse::<Comma>()?;
                let off = parser.parse()?;

                Ok(Self::LEA(dr, off))
            },
            Ident::NOT => {
                let dr = parser.parse()?;
                parser.parse::<Comma>()?;
                let sr = parser.parse()?;

                Ok(Self::NOT(dr, sr))
            },
            Ident::RET => Ok(Self::RET),
            Ident::RTI => Ok(Self::RTI),
            Ident::ST => {
                let sr = parser.parse()?;
                parser.parse::<Comma>()?;
                let off = parser.parse()?;

                Ok(Self::ST(sr, off))
            },
            Ident::STI => {
                let sr = parser.parse()?;
                parser.parse::<Comma>()?;
                let off = parser.parse()?;

                Ok(Self::STI(sr, off))
            },
            Ident::STR => {
                let dr = parser.parse()?;
                parser.parse::<Comma>()?;
                let br = parser.parse()?;
                parser.parse::<Comma>()?;
                let off = parser.parse()?;

                Ok(Self::STR(dr, br, off))
            },
            Ident::TRAP => Ok(Self::TRAP(parser.parse()?)),
            Ident::NOP => {
                // NOP can optionally accept a parameter.
                let off = match parser.peek() {
                    Some((Token::Signed(_) | Token::Unsigned(_) | Token::Ident(Ident::Label(_)), _)) => parser.parse()?,
                    _ => PCOffset::Offset(Offset::new_trunc(0)),
                };

                Ok(Self::NOP(off))
            },
            Ident::GETC => Ok(Self::GETC),
            Ident::OUT => Ok(Self::OUT),
            Ident::PUTC => Ok(Self::PUTC),
            Ident::PUTS => Ok(Self::PUTS),
            Ident::IN => Ok(Self::IN),
            Ident::PUTSP => Ok(Self::PUTSP),
            Ident::HALT => Ok(Self::HALT),
            Ident::Label(_) => Err(ParseErr::new("expected instruction", parser.cursor())) // should be unreachable
        }
    }
}

impl Parse for Directive {
    fn parse(parser: &mut Parser) -> Result<Self, ParseErr> {
        use Either::*;

        let cursor = parser.cursor();
        let directive = parser.advance_if(|mt, span| match mt {
            Some(Token::Directive(id)) => Ok(id.to_string()),
            _ => Err(ParseErr::new("expected directive", span))
        })?;

        match &*directive.to_uppercase() {
            "ORIG" => Ok(Self::Orig(parser.parse()?)),
            "FILL" => {
                // .fill is weird.
                //
                // Unlike other numeric operands, it can accept both unsigned and signed literals,
                // so it cannot be parsed with PCOffset's parser and has to be handled differently.
                let span = parser.cursor();
                let operand = match parser.match_()? {
                    Some(Left(label))            => Ok(PCOffset::Label(label)),
                    Some(Right(IntLiteral(off))) => Ok(PCOffset::Offset(Offset::new_trunc(off))),
                    _ => Err(ParseErr::new("expected numeric or label", span))
                }?;

                Ok(Self::Fill(operand))
            }
            "BLKW" => {
                let span = parser.cursor();
                let block_size: Offset<_, 16> = parser.parse()?;
                match block_size.get() != 0 {
                    true  => Ok(Self::Blkw(block_size)),
                    false => Err(ParseErr::new("block size must be greater than 0", span))
                }
            }
            "STRINGZ" => {
                let StrLiteral(s) = parser.parse()?;
                Ok(Self::Stringz(s))
            }
            "END" => Ok(Self::End),
            "EXTERNAL" => Ok(Self::External(parser.parse()?)),
            _ => Err({
                ParseErr::new("invalid directive", cursor)
                    .with_help("the valid directives are .orig, .fill, .blkw, .stringz, .end, .external")
            })
        }
    }
}

impl Parse for StmtKind {
    fn parse(parser: &mut Parser) -> Result<Self, ParseErr> {
        // This parser exists for consistency, but is not actually used.
        // See it used in the implementation of nucleus in Stmt.
        match parser.peek() {
            Some((Token::Directive(_), _)) => Ok(StmtKind::Directive(parser.parse()?)),
            Some((Token::Ident(id), _)) if !matches!(id, Ident::Label(_)) => Ok(StmtKind::Instr(parser.parse()?)),
            _ => Err(ParseErr::new("expected instruction or directive", parser.cursor()))
        }
    }
}
impl Parse for Stmt {
    fn parse(parser: &mut Parser) -> Result<Self, ParseErr> {
        let mut labels = vec![];

        // gets the span of the last token
        // useful for better error messages
        let mut last_label_span = None;

        // Scan through labels and new lines until we find an instruction
        while !parser.is_empty() {
            let span = parser.cursor();
            match parser.match_()? {
                Some(Either::Left(label)) => {
                    parser.match_::<Colon>()?; // skip colon if it exists

                    last_label_span.replace(span.clone());
                    labels.push(label);
                }
                Some(Either::Right(End)) => {},
                _ => break
            }
        }
        
        let (nucleus, span) = parser.spanned(|parser| {
            match parser.peek() {
                Some((Token::Directive(_), _)) => Ok(StmtKind::Directive(parser.parse()?)),
                Some((Token::Ident(id), _)) if !matches!(id, Ident::Label(_)) => Ok(StmtKind::Instr(parser.parse()?)),
                _ => {
                    // Parser didn't find a directive or instruction following a label.
                    // Chances are the label was just a misspelled instruction.
                    Err(ParseErr::new("expected instruction or directive", last_label_span.unwrap_or(parser.cursor())))
                }
            }
        })?;

        // assert end of line at end of statement
        parser.parse::<End>()?;
        // consume any extra NLs
        while !parser.is_empty() && parser.match_::<End>()?.is_some() {}

        Ok(Self { labels, nucleus, span })
    }
}