1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
//! Memory handling for the LC-3 simulator.
//!
//! This module consists of:
//! - [`Word`]: A mutable memory location.
//! - [`MemArray`]: The memory array.
//! - [`RegFile`]: The register file.
use rand::rngs::StdRng;
use rand::Rng;
use crate::ast::Reg;
/// A memory location that can be read and written to.
///
/// # Reading
///
/// A word's value can be read with:
/// - [`Word::get`] to directly access the value, ignoring any initialization state
/// - [`Word::get_if_init`] to directly access the value after verifying initialization state
///
/// See the respective functions for more details.
///
/// Both functions return the unsigned representation of the word.
/// If needed, this can be converted to a signed integer with typical `as` casting (`data as i16`).
///
/// # Writing
///
/// A word can be written into with a value or with another word:
/// - [`Word::set`] to read a value into this word
/// - [`Word::set_if_init`] to read a word into this word
///
/// [`Word::set_if_init`] may be more useful in situations where initialization state needs to be preserved
/// or when it needs to be verified.
///
/// See the respective functions for more details.
///
/// Words can also be written to by applying assign operations (e.g., add, sub, and, etc.).
/// All arithmetic operations that can be applied to words are assumed to be wrapping.
/// See those implementations for more details.
///
/// # Initialization
///
/// Internally, each memory location keeps track of two fields:
/// 1. its data (i.e., the value stored at this location)
/// 2. which bits of its data are truly "initialized" (as in the program knows what values are present there)
///
/// This second field is not used except for when the simulator is set to strict mode.
/// Then, this second field is leveraged to detect if uninitialized memory is being
/// written to places it shouldn't be (e.g., PC, addresses, registers and memory).
///
/// When a `Word` is created for memory/register files (i.e., via [`Word::new_uninit`]),
/// it is created with the initialization bits set to fully uninitialized.
/// The data associated with this `Word` is decided by the creation strategy
/// (see [`super::MachineInitStrategy`] for details).
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Word {
data: u16,
init: u16
}
const NO_BITS: u16 = 0;
const ALL_BITS: u16 = 1u16.wrapping_neg();
impl Word {
/// Creates a new word that is considered uninitialized.
pub fn new_uninit<F: WordFiller + ?Sized>(fill: &mut F) -> Self {
Self {
data: fill.generate(),
init: NO_BITS,
}
}
/// Creates a new word that is initialized with a given data value.
pub fn new_init(data: u16) -> Self {
Self {
data,
init: ALL_BITS,
}
}
/// Reads the word, returning its unsigned representation.
///
/// The data is returned without checking for initialization state.
/// If the initialization state should be checked before trying to query the data,
/// then [`Word::get_if_init`] should be used instead.
pub fn get(&self) -> u16 {
self.data
}
/// Reads the word if it is properly initialized under strictness requirements, returning its unsigned representation.
///
/// This function is more cognizant of word initialization than [`Word::get`].
/// - In non-strict mode (`strict == false`), this function unconditionally allows access to the data regardless of initialization state.
/// - In strict mode (`strict == true`), this function verifies `self` is fully initialized, raising the provided error if not.
pub fn get_if_init<E>(&self, strict: bool, err: E) -> Result<u16, E> {
match !strict || self.is_init() {
true => Ok(self.data),
false => Err(err)
}
}
/// Writes to the word.
///
/// This sets the word to the `data` value assuming it is **fully** initialized
/// and correspondingly sets the initialization state to be fully initialized.
///
/// If the initialization state of the `data` value should be checked before
/// trying to write to the word, then [`Word::set_if_init`] should be used instead.
pub fn set(&mut self, data: u16) {
self.data = data;
self.init = ALL_BITS;
}
/// Writes to the word while verifying the data stored is properly initialized under strictness requirements.
///
/// This function is more cognizant of word initialization than [`Word::set`].
/// - In non-strict mode, this function preserves the initialization data of the `data` argument.
/// - In strict mode, this function verifies `data` is fully initialized, raising the provided error if not.
pub fn set_if_init<E>(&mut self, data: Word, strict: bool, err: E) -> Result<(), E> {
match !strict || data.is_init() {
true => {
*self = data;
Ok(())
},
false => Err(err)
}
}
/// Checks that a word is fully initialized
pub fn is_init(&self) -> bool {
self.init == ALL_BITS
}
/// Clears initialization of this word.
pub fn clear_init(&mut self) {
self.init = NO_BITS;
}
}
impl From<u16> for Word {
/// Creates a fully initialized word.
fn from(value: u16) -> Self {
Word::new_init(value)
}
}
impl From<i16> for Word {
/// Creates a fully initialized word.
fn from(value: i16) -> Self {
Word::new_init(value as u16)
}
}
impl std::ops::Not for Word {
type Output = Word;
/// Inverts the data on this word, preserving any initialization state.
fn not(self) -> Self::Output {
// Initialization state should stay the same after this.
let Self { data, init } = self;
Self { data: !data, init }
}
}
impl std::ops::Add for Word {
type Output = Word;
/// Adds two words together (wrapping if overflow occurs).
///
/// If the two words are fully initialized,
/// the resulting word will also be fully initialized.
/// Otherwise, the resulting word is fully uninitialized.
fn add(self, rhs: Self) -> Self::Output {
let Self { data: ldata, init: linit } = self;
let Self { data: rdata, init: rinit } = rhs;
if rdata == 0 && rinit == ALL_BITS { return self; }
if ldata == 0 && linit == ALL_BITS { return rhs; }
let data = ldata.wrapping_add(rdata);
// Close enough calculation:
// If both are fully init, consider this word fully init.
// Otherwise, consider it fully uninit.
let init = match linit == ALL_BITS && rinit == ALL_BITS {
true => ALL_BITS,
false => NO_BITS,
};
Self { data, init }
}
}
impl std::ops::AddAssign for Word {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl std::ops::AddAssign<u16> for Word {
/// Increments the word by the provided value.
///
/// If the word was fully initialized,
/// its updated value is also fully initialized.
/// Otherwise, the resulting word is fully uninitialized.
fn add_assign(&mut self, rhs: u16) {
*self = *self + Word::from(rhs);
}
}
impl std::ops::AddAssign<i16> for Word {
/// Increments the word by the provided value.
///
/// If the word was fully initialized,
/// its updated value is also fully initialized.
/// Otherwise, the resulting word is fully uninitialized.
fn add_assign(&mut self, rhs: i16) {
*self = *self + Word::from(rhs);
}
}
impl std::ops::Sub for Word {
type Output = Word;
/// Subtracts two words together (wrapping if overflow occurs).
///
/// If the two words are fully initialized,
/// the resulting word will also be fully initialized.
/// Otherwise, the resulting word is fully uninitialized.
fn sub(self, rhs: Self) -> Self::Output {
let Self { data: ldata, init: linit } = self;
let Self { data: rdata, init: rinit } = rhs;
// This is (self - 0) == self.
if rdata == 0 && rinit == ALL_BITS { return self; }
let data = ldata.wrapping_sub(rdata);
// Very lazy initialization scheme.
// If both are fully init, consider this word fully init.
// Otherwise, consider it fully uninit.
let init = match linit == ALL_BITS && rinit == ALL_BITS {
true => ALL_BITS,
false => NO_BITS,
};
Self { data, init }
}
}
impl std::ops::SubAssign for Word {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl std::ops::SubAssign<u16> for Word {
/// Decrements the word by the provided value.
///
/// If the word was fully initialized,
/// its updated value is also fully initialized.
/// Otherwise, the resulting word is fully uninitialized.
fn sub_assign(&mut self, rhs: u16) {
*self = *self - Word::new_init(rhs);
}
}
impl std::ops::SubAssign<i16> for Word {
/// Decrements the word by the provided value.
///
/// If the word was fully initialized,
/// its updated value is also fully initialized.
/// Otherwise, the resulting word is fully uninitialized.
fn sub_assign(&mut self, rhs: i16) {
*self = *self - Word::new_init(rhs as _);
}
}
impl std::ops::BitAnd for Word {
type Output = Word;
/// Applies a bitwise AND across two words.
///
/// This will also compute the correct initialization
/// for the resulting word, taking into account bit clearing.
fn bitand(self, rhs: Self) -> Self::Output {
let Self { data: ldata, init: linit } = self;
let Self { data: rdata, init: rinit } = rhs;
let data = ldata & rdata;
// A given bit of the result is init if:
// - both the lhs and rhs bits are init
// - either of the bits are data: 0, init: 1
let init = (linit & rinit) | (!ldata & linit) | (!rdata & rinit);
Self { data, init }
}
}
impl std::ops::BitAndAssign for Word {
fn bitand_assign(&mut self, rhs: Self) {
*self = *self & rhs;
}
}
/// Trait that describes types that can be used to create the data for an uninitialized [`Word`].
///
/// This is used with [`Word::new_uninit`] to create uninitialized Words.
pub trait WordFiller {
/// Generate a word of data.
fn generate(&mut self) -> u16;
/// Generates an array of [`Word`]s.
fn generate_array<const N: usize>(&mut self) -> [Word; N] {
std::array::from_fn(|_| Word::new_uninit(self))
}
/// Generates a heap-allocated array of [`Word`]s.
fn generate_boxed_array<const N: usize>(&mut self) -> Box<[Word; N]> {
std::iter::repeat_with(|| Word::new_uninit(self))
.take(N)
.collect::<Box<_>>()
.try_into()
.unwrap_or_else(|_| unreachable!("iterator should have had {N} elements"))
}
}
impl WordFiller for () {
/// This creates unseeded, non-deterministic values.
fn generate(&mut self) -> u16 {
rand::random()
}
}
impl WordFiller for u16 {
/// Sets each word to the given value.
fn generate(&mut self) -> u16 {
*self
}
}
impl WordFiller for StdRng {
/// This creates values from the standard random number generator.
///
/// This can be used to create deterministic, seeded values.
fn generate(&mut self) -> u16 {
self.gen()
}
}
/// Strategy used to initialize the `reg_file` and `mem` of the [`Simulator`].
///
/// These are used to set the initial state of the memory and registers,
/// which will be treated as uninitialized until they are properly initialized
/// by program code.
///
/// [`Simulator`]: super::Simulator
#[derive(Debug, Default, PartialEq, Eq, Clone, Copy)]
pub enum MachineInitStrategy {
/// Initializes each word randomly and non-deterministically.
#[default]
Unseeded,
/// Initializes each word randomly and deterministically.
Seeded {
/// The seed the RNG was initialized with.
seed: u64
},
/// Initializes each word to a known value.
Known {
/// The value to initialize each value to.
value: u16
}
}
impl MachineInitStrategy {
pub(super) fn generator(&self) -> impl WordFiller {
use rand::SeedableRng;
match self {
MachineInitStrategy::Unseeded => WCGenerator::Unseeded,
MachineInitStrategy::Seeded { seed } => WCGenerator::Seeded(Box::new(StdRng::seed_from_u64(*seed))),
MachineInitStrategy::Known { value } => WCGenerator::Known(*value),
}
}
}
enum WCGenerator {
Unseeded,
Seeded(Box<rand::rngs::StdRng>),
Known(u16)
}
impl WordFiller for WCGenerator {
fn generate(&mut self) -> u16 {
match self {
WCGenerator::Unseeded => ().generate(),
WCGenerator::Seeded(r) => r.generate(),
WCGenerator::Known(k) => k.generate(),
}
}
}
/// Memory array.
///
/// This can be addressed with any `u16` (16-bit address).
///
/// This memory array *does* expose memory locations 0xFE00-0xFFFF,
/// however they are not accessible through normal Simulator operation
/// (i.e., via [`Simulator::read_mem`]) and [`Simulator::write_mem`].
///
/// They can be read and edited via the typical Index traits.
/// If you wish to see the handling of memory-mapped IO, see the above
/// [`Simulator`] methods.
///
/// [`Simulator`]: super::Simulator
/// [`Simulator::read_mem`]: super::Simulator::read_mem
/// [`Simulator::write_mem`]: super::Simulator::write_mem
/// [`Simulator::default_mem_ctx`]: super::Simulator::default_mem_ctx
#[derive(Debug)]
pub struct MemArray(Box<[Word; 1 << 16]>);
impl MemArray {
/// Creates a new memory with a provided word creation strategy.
pub fn new(filler: &mut impl WordFiller) -> Self {
Self(filler.generate_boxed_array())
}
/// Copies an object file block into this memory.
pub(super) fn copy_obj_block(&mut self, mut start: u16, data: &[Option<u16>]) {
let mem = &mut self.0;
// chunk_by was added in Rust 1.77
struct ChunkBy<'s, T, F>(&'s [T], F);
impl<'s, T, F: FnMut(&T, &T) -> bool> Iterator for ChunkBy<'s, T, F> {
type Item = &'s [T];
fn next(&mut self) -> Option<Self::Item> {
let (first, rest) = self.0.split_first()?;
// find the first element that doesn't match pred (+1 for the first el that was removed)
let pos = match rest.iter().position(|n| !(self.1)(first, n)) {
Some(i) => i + 1,
None => self.0.len(),
};
let (chunk, rest) = self.0.split_at(pos);
self.0 = rest;
Some(chunk)
}
}
// separate data into chunks of initialized/uninitialized
for chunk in ChunkBy(data, |a: &Option<_>, b: &Option<_>| a.is_some() == b.is_some()) {
let end = start.wrapping_add(chunk.len() as u16);
let si = usize::from(start);
let ei = usize::from(end);
let block_is_contiguous = start <= end;
if chunk[0].is_some() { // if chunk is init, copy the data over
let ch: Vec<_> = chunk.iter()
.map(|&opt| opt.unwrap())
.map(Word::new_init)
.collect();
if block_is_contiguous {
mem[si..ei].copy_from_slice(&ch);
} else {
let (left, right) = ch.split_at(start.wrapping_neg() as usize);
mem[si..].copy_from_slice(left);
mem[..ei].copy_from_slice(right)
}
} else { // if chunk is uninit, clear the initialization state
if block_is_contiguous {
for word in &mut mem[si..ei] {
word.clear_init();
}
} else {
for word in &mut mem[si..] {
word.clear_init();
}
for word in &mut mem[..ei] {
word.clear_init();
}
}
}
start = end;
}
}
pub(super) fn as_slice_mut(&mut self) -> &mut [Word] {
&mut *self.0
}
}
impl std::ops::Index<u16> for MemArray {
type Output = Word;
fn index(&self, index: u16) -> &Self::Output {
&self.0[index as usize]
}
}
impl std::ops::IndexMut<u16> for MemArray {
fn index_mut(&mut self, index: u16) -> &mut Self::Output {
&mut self.0[index as usize]
}
}
/// The register file.
///
/// This struct can be indexed with a [`Reg`].
///
/// # Example
///
/// ```
/// use lc3_ensemble::sim::mem::RegFile;
/// use lc3_ensemble::ast::Reg::R0;
///
/// let mut reg = RegFile::new(&mut ()); // never should have to initialize a reg file
/// reg[R0].set(11);
/// assert_eq!(reg[R0].get(), 11);
/// ```
#[derive(Debug, Clone)]
pub struct RegFile([Word; 8]);
impl RegFile {
/// Creates a register file with uninitialized data.
pub fn new(filler: &mut impl WordFiller) -> Self {
Self(filler.generate_array())
}
}
impl std::ops::Index<Reg> for RegFile {
type Output = Word;
fn index(&self, index: Reg) -> &Self::Output {
&self.0[usize::from(index)]
}
}
impl std::ops::IndexMut<Reg> for RegFile {
fn index_mut(&mut self, index: Reg) -> &mut Self::Output {
&mut self.0[usize::from(index)]
}
}