1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
//! IO handling for LC-3.
//!
//! The interface for IO devices is defined with the [`IODevice`] trait.
//! This is exposed to the simulator with the [`SimIO`] enum.
//!
//! Besides those two key items, this module also includes:
//! - [`EmptyIO`]: An `IODevice` holding the implementation for a lack of IO support.
//! - [`BufferedIO`]: An `IODevice` holding a buffered implementation for IO.
//! - [`BiChannelIO`]: An `IODevice` holding a threaded/channel implementation for IO.
//! - [`CustomIO`]: An `IODevice` that can be used to wrap around custom IO implementations.
use std::collections::VecDeque;
use std::io::{Read, Write};
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, RwLock, RwLockWriteGuard, TryLockError};
use crossbeam_channel as cbc;
const KBSR: u16 = 0xFE00;
const KBDR: u16 = 0xFE02;
const DSR: u16 = 0xFE04;
const DDR: u16 = 0xFE06;
const MCR: u16 = 0xFFFE;
/// An IO device that can be read/written to.
pub trait IODevice {
/// Reads the data at the given memory-mapped address.
///
/// If successful, this returns the value returned from that address.
/// If unsuccessful, this returns `None`.
fn io_read(&mut self, addr: u16) -> Option<u16>;
/// Writes the data to the given memory-mapped address.
///
/// This returns whether the write was successful or not.
fn io_write(&mut self, addr: u16, data: u16) -> bool;
}
impl dyn IODevice {} // assert IODevice is dyn safe
/// No IO. All reads and writes are unsuccessful.
///
/// If IO status registers are accessed while this is the active IO type,
/// all IO-related traps will hang.
pub struct EmptyIO;
impl IODevice for EmptyIO {
fn io_read(&mut self, _addr: u16) -> Option<u16> {
None
}
fn io_write(&mut self, _addr: u16, _data: u16) -> bool {
false
}
}
/// IO that reads from an input buffer and writes to an output buffer.
///
/// The input buffer is accessible in the simulator memory through the KBSR and KBDR.
/// The output buffer is accessible in the simulator memory through the DSR and DDR.
///
/// The buffers can be accessed in code via [`BufferedIO::get_input`] and [`BufferedIO::get_output`].
///
/// Note that if a input/output lock guard is acquired from one of the locks of this IO,
/// the input/output becomes temporarily inaccessible to the simulator.
/// Thus, a lock guard should never be leaked otherwise the simulator loses access to the input/output.
#[derive(Clone)]
pub struct BufferedIO {
input: Arc<RwLock<VecDeque<u8>>>,
output: Arc<RwLock<Vec<u8>>>
}
impl BufferedIO {
/// Creates a new BufferedIO.
pub fn new() -> Self {
Self { input: Default::default(), output: Default::default() }
}
/// Creates a new BufferedIO from already defined buffers.
pub fn with_bufs(input: Arc<RwLock<VecDeque<u8>>>, output: Arc<RwLock<Vec<u8>>>) -> Self {
Self { input, output }
}
fn try_input(&self) -> Option<RwLockWriteGuard<'_, VecDeque<u8>>> {
match self.input.try_write() {
Ok(g) => Some(g),
Err(TryLockError::Poisoned(e)) => Some(e.into_inner()),
Err(TryLockError::WouldBlock) => None,
}
}
fn try_output(&self) -> Option<RwLockWriteGuard<'_, Vec<u8>>> {
match self.output.try_write() {
Ok(g) => Some(g),
Err(TryLockError::Poisoned(e)) => Some(e.into_inner()),
Err(TryLockError::WouldBlock) => None,
}
}
/// Gets a reference to the input buffer.
pub fn get_input(&self) -> &Arc<RwLock<VecDeque<u8>>> {
&self.input
}
/// Gets a reference to the output buffer.
pub fn get_output(&self) -> &Arc<RwLock<Vec<u8>>> {
&self.output
}
}
impl Default for BufferedIO {
fn default() -> Self {
Self::new()
}
}
impl IODevice for BufferedIO {
fn io_read(&mut self, addr: u16) -> Option<u16> {
match addr {
KBSR => {
// We're ready once we can obtain a write lock to the input
// AND the input internally is not empty.
Some(io_bool({
self.try_input()
.is_some_and(|inp| !inp.is_empty())
}))
},
KBDR => self.try_input()?.pop_front().map(u16::from),
DSR => {
// We're ready once we can obtain a lock to the output.
Some(io_bool(self.try_output().is_some()))
},
_ => None
}
}
fn io_write(&mut self, addr: u16, data: u16) -> bool {
match addr {
DDR => match self.try_output() {
Some(mut out) => {
out.push(data as u8);
true
},
None => false
},
_ => false
}
}
}
/// An IO that reads from one channel and writes to another.
///
/// This binds the reader channel to the KBSR and KBDR.
/// When a character is ready from the reader channel,
/// the KBSR status is enabled and the character is accessible from the KBDR.
///
/// This binds the writer channel to the DSR and DDR.
/// When a character is ready to be written to the writer channel,
/// the DSR status is enabled and the character can be written to the DDR.
///
/// This IO type also exposes the MCR in the MCR MMIO address.
pub struct BiChannelIO {
read_data: cbc::Receiver<u8>,
write_data: cbc::Sender<u8>,
}
impl BiChannelIO {
/// Creates a new bi-channel IO device with the given reader and writer.
///
/// This invokes the reader's [`Read::read`] method every time the IO input receives a byte.
/// Note that internally, this uses the [`Read::bytes`] iterator.
/// Thus, the same cautions of using that iterator apply here.
///
/// This calls the writer's [`Write::write_all`] method
/// every time a byte needs to be written to the IO output.
///
/// This IO calls [`Write::flush`] when the IO is ready to drop.
/// This function also has a `flush_every_byte` flag, which designates
/// whether [`Write::flush`] is *also* called for every byte.
/// This may be useful to enable for displaying real time output.
///
/// This uses threads to read and write from input and output. As such,
/// the channels will continue to poll input and output even when the simulator
/// is not running. As such, care should be taken to not send messages through
/// the reader thread while the simulator is not running.
pub fn new(
reader: impl Read + Send + 'static,
mut writer: impl Write + Send + 'static,
flush_every_byte: bool
) -> Self {
let (read_tx, read_rx) = cbc::bounded(1);
let (write_tx, write_rx) = cbc::bounded(1);
// Reader thread.
// When this channel drops, the thread disconnects once the read_tx.send call passes.
// If the reader blocks, this thread only disconnects once the reader stops blocking
// (which can occur for terminal stdin).
std::thread::spawn(move || {
for m_byte in reader.bytes() {
let Ok(byte) = m_byte else { return };
let Ok(()) = read_tx.send(byte) else { return };
}
});
// Writer thread.
// When this channel drops, the thread disconnects when write_rx is queried.
// If the writer blocks on the write_all or flush calls,
// this thread only disconnects once the writer stops blocking.
std::thread::spawn(move || {
for byte in write_rx {
let Ok(()) = writer.write_all(&[byte]) else { return };
if flush_every_byte {
let Ok(()) = writer.flush() else { return };
}
}
// Errors here mean we're just gonna return, soooo...
let _ = writer.flush();
});
Self {
read_data: read_rx,
write_data: write_tx,
}
}
/// Creates a bi-channel IO device with [`std::io::stdin`] being the reader channel
/// and [`std::io::stdout`] being the writer channel.
///
/// Note that the simulator will only have access to the input data after a new line is typed (in terminal stdin).
/// Similarly, printed output will only appear once (terminal) stdout is flushed or once a new line is sent.
pub fn stdio() -> Self {
Self::new(std::io::stdin(), std::io::stdout(), false)
}
}
impl IODevice for BiChannelIO {
fn io_read(&mut self, addr: u16) -> Option<u16> {
match addr {
KBSR => Some(io_bool(self.read_data.is_full())),
KBDR => match self.read_data.try_recv() {
Ok(b) => Some(u16::from(b)),
Err(cbc::TryRecvError::Empty) => None,
// this can occur if the read handler panicked.
// however, this just means we can't get the data, so just return None
Err(cbc::TryRecvError::Disconnected) => None,
},
DSR => Some(io_bool(self.write_data.is_empty())),
_ => None
}
}
fn io_write(&mut self, addr: u16, data: u16) -> bool {
match addr {
DDR => self.write_data.send(data as u8).is_ok(),
_ => false
}
}
}
/// Converts boolean data to a register word
fn io_bool(b: bool) -> u16 {
match b {
true => 0x8000,
false => 0x0000,
}
}
/// An opaque box that holds custom defined IO.
///
/// This can be used to use a different implementation of IO
/// than the ones implemented in this module.
pub struct CustomIO(Box<dyn IODevice + Send + Sync>);
impl CustomIO {
/// Creates a new custom IO.
pub fn new(device: impl IODevice + Send + Sync + 'static) -> Self {
CustomIO(Box::new(device))
}
}
impl IODevice for CustomIO {
fn io_read(&mut self, addr: u16) -> Option<u16> {
self.0.io_read(addr)
}
fn io_write(&mut self, addr: u16, data: u16) -> bool {
self.0.io_write(addr, data)
}
}
/// An IO device that handles MCR read/writes
/// and delegates the rest to the inner IO device.
///
/// This isn't exposed publicly because public users
/// can't really do much with it, since its use
/// is hardcoded into the simulator.
#[derive(Debug, Default)]
pub(super) struct WithMCR<IO> {
pub inner: IO,
pub mcr: Arc<AtomicBool>
}
impl<IO: IODevice> IODevice for WithMCR<IO> {
fn io_read(&mut self, addr: u16) -> Option<u16> {
match addr {
MCR => Some(io_bool(self.mcr.load(Ordering::Relaxed))),
_ => self.inner.io_read(addr)
}
}
fn io_write(&mut self, addr: u16, data: u16) -> bool {
match addr {
MCR => {
// store whether last bit is 1 (e.g., if data is negative)
self.mcr.store((data as i16) < 0, Ordering::Relaxed);
true
}
_ => self.inner.io_write(addr, data)
}
}
}
/// All the variants of IO accepted by the Simulator.
#[derive(Default)]
pub enum SimIO {
/// No IO. This corresponds to the implementation of [`EmptyIO`].
#[default]
Empty,
/// A buffered implementation. See [`BufferedIO`].
Buffered(BufferedIO),
/// A bi-channel IO implementation. See [`BiChannelIO`].
BiChannel(BiChannelIO),
/// A custom IO implementation. See [`CustomIO`].
Custom(CustomIO)
}
impl std::fmt::Debug for SimIO {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SimIO")
.finish_non_exhaustive()
}
}
impl From<EmptyIO> for SimIO {
fn from(_value: EmptyIO) -> Self {
SimIO::Empty
}
}
impl From<BufferedIO> for SimIO {
fn from(value: BufferedIO) -> Self {
SimIO::Buffered(value)
}
}
impl From<BiChannelIO> for SimIO {
fn from(value: BiChannelIO) -> Self {
SimIO::BiChannel(value)
}
}
impl From<CustomIO> for SimIO {
fn from(value: CustomIO) -> Self {
SimIO::Custom(value)
}
}
impl IODevice for SimIO {
fn io_read(&mut self, addr: u16) -> Option<u16> {
match self {
SimIO::Empty => EmptyIO.io_read(addr),
SimIO::Buffered(io) => io.io_read(addr),
SimIO::BiChannel(io) => io.io_read(addr),
SimIO::Custom(io) => io.io_read(addr),
}
}
fn io_write(&mut self, addr: u16, data: u16) -> bool {
match self {
SimIO::Empty => EmptyIO.io_write(addr, data),
SimIO::Buffered(io) => io.io_write(addr, data),
SimIO::BiChannel(io) => io.io_write(addr, data),
SimIO::Custom(io) => io.io_write(addr, data)
}
}
}
pub(super) type SimIOwMCR = WithMCR<SimIO>;