1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
//! IO handling for LC-3.
//!
//! The interface for IO devices is defined with the [`IODevice`] trait.
//! This is exposed to the simulator with the [`SimIO`] enum.
//!
//! Besides those two key items, this module also includes:
//! - [`EmptyIO`]: An `IODevice` holding the implementation for a lack of IO support.
//! - [`BufferedIO`]: An `IODevice` holding a buffered implementation for IO.
//! - [`BiChannelIO`]: An `IODevice` holding a threaded/channel implementation for IO.
//! - [`CustomIO`]: An `IODevice` that can be used to wrap around custom IO implementations.
use std::collections::VecDeque;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, RwLock, RwLockWriteGuard, TryLockError};
use std::thread::JoinHandle;
use crossbeam_channel as cbc;
const KBSR: u16 = 0xFE00;
const KBDR: u16 = 0xFE02;
const DSR: u16 = 0xFE04;
const DDR: u16 = 0xFE06;
const MCR: u16 = 0xFFFE;
/// An IO device that can be read/written to.
pub trait IODevice {
/// Reads the data at the given memory-mapped address.
///
/// If successful, this returns the value returned from that address.
/// If unsuccessful, this returns `None`.
fn io_read(&self, addr: u16) -> Option<u16>;
/// Writes the data to the given memory-mapped address.
///
/// This returns whether the write was successful or not.
fn io_write(&self, addr: u16, data: u16) -> bool;
/// Tries to close this IO device.
fn close(self);
}
impl dyn IODevice {} // assert IODevice is dyn safe
/// No IO. All reads and writes are unsuccessful.
///
/// If IO status registers are accessed while this is the active IO type,
/// all IO-related traps will hang.
pub struct EmptyIO;
impl IODevice for EmptyIO {
fn io_read(&self, _addr: u16) -> Option<u16> {
None
}
fn io_write(&self, _addr: u16, _data: u16) -> bool {
false
}
fn close(self) {}
}
/// IO that reads from an input buffer and writes to an output buffer.
///
/// The input buffer is accessible in the simulator memory through the KBSR and KBDR.
/// The output buffer is accessible in the simulator memory through the DSR and DDR.
///
/// The buffers can be accessed in code via [`BufferedIO::get_input`] and [`BufferedIO::get_output`].
///
/// Note that if a input/output lock guard is acquired from one of the locks of this IO,
/// the input/output becomes temporarily inaccessible to the simulator.
/// Thus, a lock guard should never be leaked otherwise the simulator loses access to the input/output.
#[derive(Clone)]
pub struct BufferedIO {
input: Arc<RwLock<VecDeque<u8>>>,
output: Arc<RwLock<Vec<u8>>>
}
impl BufferedIO {
/// Creates a new BufferedIO.
pub fn new() -> Self {
Self { input: Default::default(), output: Default::default() }
}
/// Creates a new BufferedIO from already defined buffers.
pub fn with_bufs(input: Arc<RwLock<VecDeque<u8>>>, output: Arc<RwLock<Vec<u8>>>) -> Self {
Self { input, output }
}
fn try_input(&self) -> Option<RwLockWriteGuard<'_, VecDeque<u8>>> {
match self.input.try_write() {
Ok(g) => Some(g),
Err(TryLockError::Poisoned(e)) => Some(e.into_inner()),
Err(TryLockError::WouldBlock) => None,
}
}
fn try_output(&self) -> Option<RwLockWriteGuard<'_, Vec<u8>>> {
match self.output.try_write() {
Ok(g) => Some(g),
Err(TryLockError::Poisoned(e)) => Some(e.into_inner()),
Err(TryLockError::WouldBlock) => None,
}
}
/// Gets a reference to the input buffer.
pub fn get_input(&self) -> &Arc<RwLock<VecDeque<u8>>> {
&self.input
}
/// Gets a reference to the output buffer.
pub fn get_output(&self) -> &Arc<RwLock<Vec<u8>>> {
&self.output
}
}
impl Default for BufferedIO {
fn default() -> Self {
Self::new()
}
}
impl IODevice for BufferedIO {
fn io_read(&self, addr: u16) -> Option<u16> {
match addr {
KBSR => {
// We're ready once we can obtain a write lock to the input
// AND the input internally is not empty.
Some(io_bool({
self.try_input()
.is_some_and(|inp| !inp.is_empty())
}))
},
KBDR => self.try_input()?.pop_front().map(u16::from),
DSR => {
// We're ready once we can obtain a lock to the output.
Some(io_bool(self.try_output().is_some()))
},
_ => None
}
}
fn io_write(&self, addr: u16, data: u16) -> bool {
match addr {
DDR => match self.try_output() {
Some(mut out) => {
out.push(data as u8);
true
},
None => false
},
_ => false
}
}
fn close(self) {}
}
/// A helper struct for [`BiChannelIO::new`],
/// indicating the channel is closed and no more reads/writes will come from it.
#[derive(Clone, Copy, Default, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct Stop;
/// An IO that reads from one channel and writes to another.
///
/// This binds the reader channel to the KBSR and KBDR.
/// When a character is ready from the reader channel,
/// the KBSR status is enabled and the character is accessible from the KBDR.
///
/// This binds the writer channel to the DSR and DDR.
/// When a character is ready to be written to the writer channel,
/// the DSR status is enabled and the character can be written to the DDR.
///
/// This IO type also exposes the MCR in the MCR MMIO address.
pub struct BiChannelIO {
read_data: cbc::Receiver<u8>,
#[allow(unused)]
read_handler: JoinHandle<()>,
write_data: cbc::Sender<u8>,
write_handler: JoinHandle<()>
}
impl BiChannelIO {
/// Creates a new bi-channel IO device with the given reader and writer.
///
/// This calls the reader function every time the IO input receives a byte.
/// The reader function should block until a byte is ready, or return Stop
/// if there are no more bytes to read.
///
/// This calls the writer function every time a byte needs to be written to the
/// IO output.
///
/// This uses threads to read and write from input and output. As such,
/// the channels will continue to poll input and output even when the simulator
/// is not running. As such, care should be taken to not send messages through
/// the reader thread while the simulator is not running.
pub fn new(
mut reader: impl FnMut() -> Result<u8, Stop> + Send + 'static,
mut writer: impl FnMut(u8) -> Result<(), Stop> + Send + 'static
) -> Self {
let (read_tx, read_rx) = cbc::bounded(1);
let (write_tx, write_rx) = cbc::bounded(1);
// Reader thread:
let read_handler = std::thread::spawn(move || loop {
let Ok(byte) = reader() else { return };
let Ok(()) = read_tx.send(byte) else { return };
});
// Writer thread:
let write_handler = std::thread::spawn(move || {
for byte in write_rx {
let Ok(()) = writer(byte) else { return };
}
});
Self {
read_data: read_rx,
read_handler,
write_data: write_tx,
write_handler
}
}
/// Creates a bi-channel IO device with stdin being the read data and stdout being the write data.
///
/// Note that due to how stdin works in terminals, data is only sent once a new line is typed.
/// Additionally, this flushes stdout every time a byte is written.
pub fn stdio() -> Self {
use std::io::{self, BufRead, Write};
Self::new(
|| {
let mut stdin = io::stdin().lock();
let &[byte, ..] = stdin.fill_buf().unwrap() else {
// terminal stdin would poll, so this is unreachable with terminal stdin
return Err(Stop);
};
stdin.consume(1);
Ok(byte)
},
|byte| {
io::stdout().write_all(&[byte]).unwrap();
io::stdout().flush().unwrap();
Ok(())
}
)
}
}
impl IODevice for BiChannelIO {
fn io_read(&self, addr: u16) -> Option<u16> {
match addr {
KBSR => Some(io_bool(self.read_data.is_full())),
KBDR => match self.read_data.try_recv() {
Ok(b) => Some(u16::from(b)),
Err(cbc::TryRecvError::Empty) => None,
// this can occur if the read handler panicked.
// however, this just means we can't get the data, so just return None
Err(cbc::TryRecvError::Disconnected) => None,
},
DSR => Some(io_bool(self.write_data.is_empty())),
_ => None
}
}
fn io_write(&self, addr: u16, data: u16) -> bool {
match addr {
DDR => self.write_data.send(data as u8).is_ok(),
_ => false
}
}
fn close(self) {
let Self {
read_data,
read_handler: _,
write_data,
write_handler
} = self;
// Drop the channels.
std::mem::drop(read_data);
std::mem::drop(write_data);
// Wait for the write handler to join.
// This shouldn't block for long, because we just
// disconnected the channel.
// We're not going to wait for the read handler
// because it can hang on reading, which prevents it from seeing
// the channel is disconnected.
// Also, don't error.
// Skill issue.
let _ = write_handler.join();
}
}
/// Converts boolean data to a register word
fn io_bool(b: bool) -> u16 {
match b {
true => 0x8000,
false => 0x0000,
}
}
// `Box<dyn IODevice>` does not work.
// It doesn't implement IODevice because it doesn't implement close
// (because you can't close on an unsized dyn IODevice).
//
// However, changing the signature makes BiChannelIO annoying.
// So, this hack basically puts the device in an Option
// and closes it by taking it out and closing it without consuming the entire object,
// making close only require &mut Self instead of Self.
trait IODeviceMutClosable {
fn io_read(&self, addr: u16) -> Option<u16>;
fn io_write(&self, addr: u16, data: u16) -> bool;
/// Closes but doesn't consume the object.
///
/// The object should not be used after this point.
fn take_close(&mut self);
}
impl<D: IODevice> IODeviceMutClosable for Option<D> {
fn io_read(&self, addr: u16) -> Option<u16> {
self.as_ref().unwrap().io_read(addr)
}
fn io_write(&self, addr: u16, data: u16) -> bool {
self.as_ref().unwrap().io_write(addr, data)
}
fn take_close(&mut self) {
self.take().unwrap().close()
}
}
/// An opaque box that holds custom defined IO.
///
/// This can be used to use a different implementation of IO
/// than the ones implemented in this module.
pub struct CustomIO(Box<dyn IODeviceMutClosable + Send + Sync>);
impl CustomIO {
/// Creates a new custom IO.
pub fn new(device: impl IODevice + Send + Sync + 'static) -> Self {
CustomIO(Box::new(Some(device)))
}
}
impl IODevice for CustomIO {
fn io_read(&self, addr: u16) -> Option<u16> {
self.0.io_read(addr)
}
fn io_write(&self, addr: u16, data: u16) -> bool {
self.0.io_write(addr, data)
}
fn close(mut self) {
self.0.take_close();
std::mem::drop(self)
}
}
/// An IO device that handles MCR read/writes
/// and delegates the rest to the inner IO device.
///
/// This isn't exposed publicly because public users
/// can't really do much with it, since its use
/// is hardcoded into the simulator.
#[derive(Debug, Default)]
pub(super) struct WithMCR<IO> {
pub inner: IO,
pub mcr: Arc<AtomicBool>
}
impl<IO: IODevice> IODevice for WithMCR<IO> {
fn io_read(&self, addr: u16) -> Option<u16> {
match addr {
MCR => Some(io_bool(self.mcr.load(Ordering::Relaxed))),
_ => self.inner.io_read(addr)
}
}
fn io_write(&self, addr: u16, data: u16) -> bool {
match addr {
MCR => {
// store whether last bit is 1 (e.g., if data is negative)
self.mcr.store((data as i16) < 0, Ordering::Relaxed);
true
}
_ => self.inner.io_write(addr, data)
}
}
fn close(self) {
self.inner.close()
}
}
/// All the variants of IO accepted by the Simulator.
#[derive(Default)]
pub enum SimIO {
/// No IO. This corresponds to the implementation of [`EmptyIO`].
#[default]
Empty,
/// A buffered implementation. See [`BufferedIO`].
Buffered(BufferedIO),
/// A bi-channel IO implementation. See [`BiChannelIO`].
BiChannel(BiChannelIO),
/// A custom IO implementation. See [`CustomIO`].
Custom(CustomIO)
}
impl std::fmt::Debug for SimIO {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SimIO")
.finish_non_exhaustive()
}
}
impl From<EmptyIO> for SimIO {
fn from(_value: EmptyIO) -> Self {
SimIO::Empty
}
}
impl From<BufferedIO> for SimIO {
fn from(value: BufferedIO) -> Self {
SimIO::Buffered(value)
}
}
impl From<BiChannelIO> for SimIO {
fn from(value: BiChannelIO) -> Self {
SimIO::BiChannel(value)
}
}
impl From<CustomIO> for SimIO {
fn from(value: CustomIO) -> Self {
SimIO::Custom(value)
}
}
impl IODevice for SimIO {
fn io_read(&self, addr: u16) -> Option<u16> {
match self {
SimIO::Empty => EmptyIO.io_read(addr),
SimIO::Buffered(io) => io.io_read(addr),
SimIO::BiChannel(io) => io.io_read(addr),
SimIO::Custom(io) => io.io_read(addr),
}
}
fn io_write(&self, addr: u16, data: u16) -> bool {
match self {
SimIO::Empty => EmptyIO.io_write(addr, data),
SimIO::Buffered(io) => io.io_write(addr, data),
SimIO::BiChannel(io) => io.io_write(addr, data),
SimIO::Custom(io) => io.io_write(addr, data)
}
}
fn close(self) {
match self {
SimIO::Empty => EmptyIO.close(),
SimIO::Buffered(io) => io.close(),
SimIO::BiChannel(io) => io.close(),
SimIO::Custom(io) => io.close()
}
}
}
pub(super) type SimIOwMCR = WithMCR<SimIO>;