1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
//! IO handling for LC-3.
//!
//! The interface for IO devices is defined with the [`IODevice`] trait.
//! This is exposed to the simulator with the [`SimIO`] enum.
//!
//! Besides those two key items, this module also includes:
//! - [`EmptyIO`]: An `IODevice` holding the implementation for a lack of IO support.
//! - [`BiChannelIO`]: An `IODevice` holding a basic implementation for IO.
//! - [`CustomIO`]: An `IODevice` that can be used to wrap around custom IO implementations.
//! - [`BlockingQueue`]: Not an `IODevice`, but a utility data structure that can be used as an input buffer.
mod queue;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use std::thread::JoinHandle;
use crossbeam_channel as cbc;
pub use queue::*;
const KBSR: u16 = 0xFE00;
const KBDR: u16 = 0xFE02;
const DSR: u16 = 0xFE04;
const DDR: u16 = 0xFE06;
const MCR: u16 = 0xFFFE;
/// An IO device that can be read/written to.
pub trait IODevice {
/// Reads the data at the given memory-mapped address.
///
/// If successful, this returns the value returned from that address.
/// If unsuccessful, this returns `None`.
fn io_read(&self, addr: u16) -> Option<u16>;
/// Writes the data to the given memory-mapped address.
///
/// This returns whether the write was successful or not.
fn io_write(&self, addr: u16, data: u16) -> bool;
/// Tries to close this IO device.
fn close(self);
}
impl dyn IODevice {} // assert IODevice is dyn safe
/// No IO. All reads and writes are unsuccessful.
///
/// If IO status registers are accessed while this is the active IO type,
/// all IO-related traps will hang.
pub struct EmptyIO;
impl IODevice for EmptyIO {
fn io_read(&self, _addr: u16) -> Option<u16> {
None
}
fn io_write(&self, _addr: u16, _data: u16) -> bool {
false
}
fn close(self) {}
}
/// A helper struct for [`BiChannelIO::new`],
/// indicating the channel is closed and no more reads/writes will come from it.
#[derive(Clone, Copy, Default, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct Stop;
/// An IO that reads from one channel and writes to another.
///
/// This binds the reader channel to the KBSR and KBDR.
/// When a character is ready from the reader channel,
/// the KBSR status is enabled and the character is accessible from the KBDR.
///
/// This binds the writer channel to the DSR and DDR.
/// When a character is ready to be written to the writer channel,
/// the DSR status is enabled and the character can be written to the DDR.
///
/// This IO type also exposes the MCR in the MCR MMIO address.
pub struct BiChannelIO {
read_data: cbc::Receiver<u8>,
#[allow(unused)]
read_handler: JoinHandle<()>,
write_data: cbc::Sender<u8>,
write_handler: JoinHandle<()>,
mcr: Arc<AtomicBool>
}
impl BiChannelIO {
/// Creates a new bi-channel IO device with the given reader and writer.
///
/// This calls the reader function every time the IO input receives a byte.
/// The reader function should block until a byte is ready, or return Stop
/// if there are no more bytes to read.
///
/// This calls the writer function every time a byte needs to be written to the
/// IO output.
///
/// This uses threads to read and write from input and output. As such,
/// the channels will continue to poll input and output even when the simulator
/// is not running. As such, care should be taken to not send messages through
/// the reader thread while the simulator is not running.
pub fn new(
mut reader: impl FnMut() -> Result<u8, Stop> + Send + 'static,
mut writer: impl FnMut(u8) -> Result<(), Stop> + Send + 'static,
mcr: Arc<AtomicBool>
) -> Self {
let (read_tx, read_rx) = cbc::bounded(1);
let (write_tx, write_rx) = cbc::bounded(1);
// Reader thread:
let read_handler = std::thread::spawn(move || loop {
let Ok(byte) = reader() else { return };
let Ok(()) = read_tx.send(byte) else { return };
});
// Writer thread:
let write_handler = std::thread::spawn(move || {
for byte in write_rx {
let Ok(()) = writer(byte) else { return };
}
});
Self {
read_data: read_rx,
read_handler,
write_data: write_tx,
write_handler,
mcr
}
}
/// Creates a bi-channel IO device with stdin being the read data and stdout being the write data.
///
/// Note that due to how stdin works in terminals, data is only sent once a new line is typed.
/// Additionally, this flushes stdout every time a byte is written.
pub fn stdio(mcr: Arc<AtomicBool>) -> Self {
use std::io::{self, BufRead, Write};
Self::new(
|| {
let mut stdin = io::stdin().lock();
let &[byte, ..] = stdin.fill_buf().unwrap() else {
// terminal stdin would poll, so this is unreachable with terminal stdin
return Err(Stop);
};
stdin.consume(1);
Ok(byte)
},
|byte| {
io::stdout().write_all(&[byte]).unwrap();
io::stdout().flush().unwrap();
Ok(())
},
mcr
)
}
}
impl IODevice for BiChannelIO {
fn io_read(&self, addr: u16) -> Option<u16> {
match addr {
KBSR => Some(io_bool(self.read_data.is_full())),
KBDR => match self.read_data.try_recv() {
Ok(b) => Some(u16::from(b)),
Err(cbc::TryRecvError::Empty) => None,
// this can occur if the read handler panicked.
// however, this just means we can't get the data, so just return None
Err(cbc::TryRecvError::Disconnected) => None,
},
DSR => Some(io_bool(self.write_data.is_empty())),
MCR => Some(io_bool(self.mcr.load(Ordering::Relaxed))),
_ => None
}
}
fn io_write(&self, addr: u16, data: u16) -> bool {
match addr {
DDR => self.write_data.send(data as u8).is_ok(),
MCR => {
// store whether last bit is 1 (e.g., if data is negative)
self.mcr.store((data as i16) < 0, Ordering::Relaxed);
true
}
_ => false
}
}
fn close(self) {
let Self {
read_data,
read_handler: _,
write_data,
write_handler,
mcr: _
} = self;
// Drop the channels.
std::mem::drop(read_data);
std::mem::drop(write_data);
// Wait for the write handler to join.
// This shouldn't block for long, because we just
// disconnected the channel.
// We're not going to wait for the read handler
// because it can hang on reading, which prevents it from seeing
// the channel is disconnected.
// Also, don't error.
// Skill issue.
let _ = write_handler.join();
}
}
/// Converts boolean data to a register word
fn io_bool(b: bool) -> u16 {
match b {
true => 0x8000,
false => 0x0000,
}
}
// `Box<dyn IODevice>` does not work.
// It doesn't implement IODevice because it doesn't implement close
// (because you can't close on an unsized dyn IODevice).
//
// However, changing the signature makes BiChannelIO annoying.
// So, this hack basically puts the device in an Option
// and closes it by taking it out and closing it without consuming the entire object,
// making close only require &mut Self instead of Self.
trait IODeviceMutClosable {
fn io_read(&self, addr: u16) -> Option<u16>;
fn io_write(&self, addr: u16, data: u16) -> bool;
/// Closes but doesn't consume the object.
///
/// The object should not be used after this point.
fn take_close(&mut self);
}
impl<D: IODevice> IODeviceMutClosable for Option<D> {
fn io_read(&self, addr: u16) -> Option<u16> {
self.as_ref().unwrap().io_read(addr)
}
fn io_write(&self, addr: u16, data: u16) -> bool {
self.as_ref().unwrap().io_write(addr, data)
}
fn take_close(&mut self) {
self.take().unwrap().close()
}
}
/// An opaque box that holds custom defined IO.
///
/// This can be used to use a different implementation of IO
/// than the ones implemented in this module.
pub struct CustomIO(Box<dyn IODeviceMutClosable + Send + Sync>);
impl CustomIO {
/// Creates a new custom IO.
pub fn new(device: impl IODevice + Send + Sync + 'static) -> Self {
CustomIO(Box::new(Some(device)))
}
}
impl IODevice for CustomIO {
fn io_read(&self, addr: u16) -> Option<u16> {
self.0.io_read(addr)
}
fn io_write(&self, addr: u16, data: u16) -> bool {
self.0.io_write(addr, data)
}
fn close(mut self) {
self.0.take_close();
std::mem::drop(self)
}
}
/// All the variants of IO accepted by the Simulator.
pub enum SimIO {
/// No IO. This corresponds to the implementation of [`EmptyIO`].
Empty,
/// A bi-channel IO implementation. See [`BiChannelIO`].
BiChannel(BiChannelIO),
/// A custom IO implementation. See [`CustomIO`].
Custom(CustomIO)
}
impl std::fmt::Debug for SimIO {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SimIO")
.finish_non_exhaustive()
}
}
impl From<EmptyIO> for SimIO {
fn from(_value: EmptyIO) -> Self {
SimIO::Empty
}
}
impl From<BiChannelIO> for SimIO {
fn from(value: BiChannelIO) -> Self {
SimIO::BiChannel(value)
}
}
impl From<CustomIO> for SimIO {
fn from(value: CustomIO) -> Self {
SimIO::Custom(value)
}
}
impl IODevice for SimIO {
fn io_read(&self, addr: u16) -> Option<u16> {
match self {
SimIO::Empty => EmptyIO.io_read(addr),
SimIO::BiChannel(io) => io.io_read(addr),
SimIO::Custom(io) => io.io_read(addr)
}
}
fn io_write(&self, addr: u16, data: u16) -> bool {
match self {
SimIO::Empty => EmptyIO.io_write(addr, data),
SimIO::BiChannel(io) => io.io_write(addr, data),
SimIO::Custom(io) => io.io_write(addr, data)
}
}
fn close(self) {
match self {
SimIO::Empty => EmptyIO.close(),
SimIO::BiChannel(io) => io.close(),
SimIO::Custom(io) => io.close()
}
}
}