1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
//! This module holds the AST for statements from assembly source code.
//!
//! For instructions that map to bytecode instructions, see [`sim::SimInstr`].
//!
//! Useful structs in this module include:
//! - [`AsmInstr`]: An enum of all possible assembly source code instructions
//! - [`Directive`]: An enum of all possible assembly source code directives
//! - [`Stmt`]: The format for a single "statement" in assembly source code
//!
//! [`sim::SimInstr`]: [`crate::ast::sim::SimInstr`]
use std::fmt::Write as _;
use super::{CondCode, IOffset, ImmOrReg, Label, Offset, PCOffset, Reg, TrapVect8};
type PCOffset9 = PCOffset<i16, 9>;
type PCOffset11 = PCOffset<i16, 11>;
/// An enum representing all of the possible instructions in LC-3 assembly code.
///
/// The variants in this enum represent instructions before assembly passes.
///
/// For instructions that map to typeable assembly code, refer to [`sim::SimInstr`].
///
/// [`sim::SimInstr`]: [`crate::ast::sim::SimInstr`]
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub enum AsmInstr {
/// An ADD instruction.
///
/// # Operation
///
/// Evaluates the two operands, adds them, and stores the result to the destination register (`DR`).
/// This also sets the condition code for the LC-3 machine.
///
/// # Syntax
/// - `ADD DR, SR1, SR2`
/// - `ADD DR, SR1, imm5`
ADD(Reg, Reg, ImmOrReg<5>),
/// An AND instruction.
///
/// # Operation
///
/// Evaluates the two operands, bitwise ANDs them, and stores the result to the destination register (`DR`).
/// This also sets the condition code for the LC-3 machine.
///
/// # Syntax
/// - `AND DR, SR1, SR2`
/// - `AND DR, SR1, imm5`
AND(Reg, Reg, ImmOrReg<5>),
/// A BR instruction.
///
/// # Operation
///
/// Checks the current condition code and branches to the given `PCOffset9`
/// if the condition code matches one of the provided condition codes of the instruction.
///
/// # Syntax
/// - `BR PCOffset9` (equivalent to `BRnzp`),
/// - `BRn PCOffset9`
/// - `BRz PCOffset9`
/// - `BRnz PCOffset9`
/// - `BRp PCOffset9`
/// - `BRnp PCOffset9`
/// - `BRzp PCOffset9`
/// - `BRnzp PCOffset9`
BR(CondCode, PCOffset9),
/// A JMP instruction.
///
/// # Operation
///
/// Unconditionally jumps to the location stored in the given register (`BR`).
///
/// # Syntax
/// - `JMP BR`
JMP(Reg),
/// A JSR instruction.
///
/// # Operation
///
/// Jumps to a given subroutine. This is done by storing the current PC into R7,
/// and then unconditionally jumping to the location of the given `PCOffset11`.
///
/// # Syntax
/// - `JSR PCOffset11`
JSR(PCOffset11),
/// A JSRR instruction.
///
/// # Operation
///
/// Jumps to a given subroutine. This is done by storing the current PC into R7,
/// and then unconditionally jumping to the location stored in the given register (`BR`).
///
/// # Syntax
/// - `JSR BR`
JSRR(Reg),
/// A LD instruction.
///
/// # Operation
///
/// Computes an effective address (`PC + PCOffset9`), accesses the memory at that address,
/// and stores it to the destination register (`DR`).
/// This also sets the condition code for the LC-3 machine.
///
/// # Syntax
/// - `LD DR, PCOffset9`
LD(Reg, PCOffset9),
/// A LDI instruction.
///
/// # Operation
///
/// Computes an effective address (`mem[PC + PCOffset9]`), accesses the memory at that address,
/// and stores it to the destination register (`DR`).
/// This also sets the condition code for the LC-3 machine.
///
/// # Syntax
/// - `LDI DR, PCOffset9`
LDI(Reg, PCOffset9),
/// A LDR instruction.
///
/// # Operation
///
/// Computes an effective address (`mem[BR + offset6]`), accesses the memory at that address,
/// and stores it to the destination register (`DR`).
/// This also sets the condition code for the LC-3 machine.
///
/// # Syntax
/// - `LDR DR, BR, offset6`
LDR(Reg, Reg, IOffset<6>),
/// A LEA instruction.
///
/// # Operation
///
/// Computes an effective address (`PC + PCOffset9`) and stores it to the destination register (`DR`).
///
/// # Syntax
/// - `LEA DR, PCOffset9`
LEA(Reg, PCOffset9),
/// A NOT instruction.
///
/// # Operation
///
/// Evaluates the operand, bitwise NOTs them, and stores the result to the destination register (`DR`).
/// This also sets the condition code for the LC-3 machine.
///
/// # Syntax
/// - `NOT DR, SR`
NOT(Reg, Reg),
/// A RET instruction.
///
/// # Operation
///
/// Returns from a subroutine. This is an alias for `JMP R7`.
///
/// # Syntax
/// - `RET`
RET,
/// A RTI instruction.
///
/// # Operation
///
/// Returns from a trap or interrupt.
///
/// # Syntax
/// - `RTI`
RTI,
/// A ST instruction.
///
/// # Operation
///
/// Computes an effective address (`PC + PCOffset9`), and writes the value from the source register (`SR`)
/// into the memory at that address,
///
/// # Syntax
/// - `ST SR, PCOffset9`
ST(Reg, PCOffset9),
/// A STI instruction.
///
/// # Operation
///
/// Computes an effective address (`mem[PC + PCOffset9]`), and writes the value from the source register (`SR`)
/// into the memory at that address,
///
/// # Syntax
/// - `STI SR, PCOffset9`
STI(Reg, PCOffset9),
/// A STR instruction.
///
/// # Operation
///
/// Computes an effective address (`mem[BR + offset6]`), and writes the value from the source register (`SR`)
/// into the memory at that address,
///
/// # Syntax
/// - `STR SR, BR, offset6`
STR(Reg, Reg, IOffset<6>),
/// A TRAP instruction.
///
/// # Operation
///
/// Executes the trap with the given trap vector `TrapVect8`.
///
/// # Syntax
/// - `TRAP TrapVect8`
TRAP(TrapVect8),
/* ALIASES AND TRAPS */
/// A NOP instruction.
///
/// # Operation
///
/// Does nothing.
///
/// # Syntax
/// - `NOP`
/// - `NOP LABEL` (label is computed, but not used)
/// - `NOP #99`
NOP(PCOffset9),
/// A GETC instruction.
///
/// # Operation
///
/// Gets a character from the keyboard, and store it into R0 (with the high 8 bits cleared).
/// This is an alias for `TRAP x20`.
///
/// # Syntax
/// - `GETC`
GETC,
/// An OUT instruction.
///
/// # Operation
///
/// Writes a character from `R0[7:0]` to the display. This is an alias for `TRAP x21`.
///
/// # Syntax
/// - `OUT`
OUT,
/// A PUTC instruction.
///
/// # Operation
///
/// Writes a character from `R0[7:0]` to the display. This is an alias for `TRAP x21`.
///
/// # Syntax
/// - `PUTC`
PUTC,
/// A PUTS instruction.
///
/// # Operation
///
/// Prints characters in consecutive memory locations until a x00 character is read.
/// This starts with the memory location pointed to by the address in `R0`.
///
/// This is an alias for `TRAP x22`.
///
/// # Syntax
/// - `PUTS`
PUTS,
/// An IN instruction.
///
/// # Operation
///
/// Prompts the user for a character, stores the character into `R0` (with the high 8 bits cleared).
/// Additionally, this prints the obtained character onto the display.
///
/// This is an alias for `TRAP x23`.
///
/// # Syntax
/// - `IN`
IN,
/// A PUTSP instruction.
///
/// # Operation
///
/// Prints characters (two characters per memory location) until a x00 character is read.
/// This starts with the memory location pointed to by the address in `R0`.
/// This first prints the character in the low 8 bits, and then the character in the high 8 bits.
///
/// This is an alias for `TRAP x24`.
///
/// # Syntax
/// - `PUTSP`
PUTSP,
/// A HALT instruction.
///
/// # Operation
///
/// Stops execution of the program. This is an alias for `TRAP x25`.
///
/// # Syntax
/// - `HALT`
HALT
}
impl std::fmt::Display for AsmInstr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::ADD(dr, sr1, sr2) => write!(f, "ADD {dr}, {sr1}, {sr2}"),
Self::AND(dr, sr1, sr2) => write!(f, "AND {dr}, {sr1}, {sr2}"),
Self::BR(cc, off) => {
if cc != &0 {
write!(f, "BR")?;
if cc & 0b100 != 0 { f.write_char('n')?; };
if cc & 0b010 != 0 { f.write_char('z')?; };
if cc & 0b001 != 0 { f.write_char('p')?; };
} else {
write!(f, "NOP")?;
}
write!(f, " {off}")
},
Self::JMP(br) => write!(f, "JMP {br}"),
Self::JSR(off) => write!(f, "JSR {off}"),
Self::JSRR(br) => write!(f, "JSRR {br}"),
Self::LD(dr, off) => write!(f, "LD {dr}, {off}"),
Self::LDI(dr, off) => write!(f, "LDI {dr}, {off}"),
Self::LDR(dr, br, off) => write!(f, "LDR {dr}, {br}, {off}"),
Self::LEA(dr, off) => write!(f, "LEA {dr}, {off}"),
Self::NOT(dr, sr) => write!(f, "NOT {dr}, {sr}"),
Self::RET => f.write_str("RET"),
Self::RTI => f.write_str("RTI"),
Self::ST(sr, off) => write!(f, "ST {sr}, {off}"),
Self::STI(sr, off) => write!(f, "STI {sr}, {off}"),
Self::STR(sr, br, off) => write!(f, "STR {sr}, {br}, {off}"),
Self::TRAP(vect) => write!(f, "TRAP {vect:02X}"),
Self::NOP(off) => write!(f, "NOP {off}"),
Self::GETC => f.write_str("GETC"),
Self::OUT => f.write_str("OUT"),
Self::PUTC => f.write_str("PUTC"),
Self::PUTS => f.write_str("PUTS"),
Self::IN => f.write_str("IN"),
Self::PUTSP => f.write_str("PUTSP"),
Self::HALT => f.write_str("HALT"),
}
}
}
/// An enum representing all the possible directives in LC-3 assembly code.
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub enum Directive {
/// An `.orig` directive.
///
/// # Operation
///
/// Starts a block of assembly.
///
/// # Syntax
///
/// `.orig ADDR`
Orig(Offset<u16, 16>),
/// A `.fill` directive.
///
/// # Operation
///
/// Writes some data into the given memory location.
///
/// # Syntax
///
/// `.fill DATA`
/// `.fill LABEL`
Fill(PCOffset<u16, 16>),
/// A `.blkw` directive.
///
/// # Operation
///
/// Saves a provided number of memory locations for writing into.
///
/// # Syntax
///
/// `.blkw N`
Blkw(Offset<u16, 16>),
/// A `.stringz` directive.
///
/// # Operation
///
/// Writes a null-terminated string into the provided location.
///
/// # Syntax
///
/// `.stringz "A literal"`
Stringz(String),
/// A `.end` directive.
///
/// # Operation
///
/// Closes a block started by an `.orig`.
///
/// # Syntax
///
/// `.end`
End,
// External
}
impl std::fmt::Display for Directive {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Orig(addr) => write!(f, ".orig {addr:04X}"),
Self::Fill(val) => write!(f, ".fill {val}"),
Self::Blkw(n) => write!(f, ".blkw {n}"),
Self::Stringz(val) => write!(f, ".stringz {val:?}"),
Self::End => write!(f, ".end"),
}
}
}
/// Either an instruction or a directive.
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub enum StmtKind {
#[allow(missing_docs)]
Instr(AsmInstr),
#[allow(missing_docs)]
Directive(Directive)
}
impl std::fmt::Display for StmtKind {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
StmtKind::Instr(i) => i.fmt(f),
StmtKind::Directive(d) => d.fmt(f),
}
}
}
/// A "statement" in LC-3 assembly.
///
/// While not a defined term in LC-3 assembly,
/// a statement here refers to either an instruction or a directive,
/// and the labels that are associated with it.
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct Stmt {
/// The labels.
pub labels: Vec<Label>,
/// The instruction or directive.
pub nucleus: StmtKind,
/// The span of the nucleus.
pub span: std::ops::Range<usize>
}
impl std::fmt::Display for Stmt {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
for label in &self.labels {
label.fmt(f)?;
f.write_char(' ')?;
}
self.nucleus.fmt(f)
}
}
/**
* Attempts to disassemble bytecode back into assembly instructions.
*/
pub fn disassemble(data: &[u16]) -> Vec<Stmt> {
data.iter()
.copied()
.map(|word| {
let msi = match word > 0x100 {
true => super::sim::SimInstr::decode(word).ok(),
false => None,
};
let nucleus = match msi {
Some(si) => {
let ai = match si {
super::sim::SimInstr::BR(cc, off) => AsmInstr::BR(cc, PCOffset::Offset(off)),
super::sim::SimInstr::ADD(dr, sr1, sr2) => AsmInstr::ADD(dr, sr1, sr2),
super::sim::SimInstr::LD(dr, off) => AsmInstr::LD(dr, PCOffset::Offset(off)),
super::sim::SimInstr::ST(sr, off) => AsmInstr::ST(sr, PCOffset::Offset(off)),
super::sim::SimInstr::JSR(off) => match off {
ImmOrReg::Imm(imm) => AsmInstr::JSR(PCOffset::Offset(imm)),
ImmOrReg::Reg(reg) => AsmInstr::JSRR(reg),
},
super::sim::SimInstr::AND(dr, sr1, sr2) => AsmInstr::AND(dr, sr1, sr2),
super::sim::SimInstr::LDR(dr, br, off) => AsmInstr::LDR(dr, br, off),
super::sim::SimInstr::STR(sr, br, off) => AsmInstr::STR(sr, br, off),
super::sim::SimInstr::RTI => AsmInstr::RTI,
super::sim::SimInstr::NOT(dr, sr) => AsmInstr::NOT(dr, sr),
super::sim::SimInstr::LDI(dr, off) => AsmInstr::LDI(dr, PCOffset::Offset(off)),
super::sim::SimInstr::STI(sr, off) => AsmInstr::STI(sr, PCOffset::Offset(off)),
super::sim::SimInstr::JMP(super::reg_consts::R7) => AsmInstr::RET,
super::sim::SimInstr::JMP(br) => AsmInstr::JMP(br),
super::sim::SimInstr::LEA(dr, off) => AsmInstr::LEA(dr, PCOffset::Offset(off)),
super::sim::SimInstr::TRAP(vect) if vect.get() == 0x20 => AsmInstr::GETC,
super::sim::SimInstr::TRAP(vect) if vect.get() == 0x21 => AsmInstr::PUTC,
super::sim::SimInstr::TRAP(vect) if vect.get() == 0x22 => AsmInstr::PUTS,
super::sim::SimInstr::TRAP(vect) if vect.get() == 0x23 => AsmInstr::IN,
super::sim::SimInstr::TRAP(vect) if vect.get() == 0x24 => AsmInstr::PUTSP,
super::sim::SimInstr::TRAP(vect) if vect.get() == 0x25 => AsmInstr::HALT,
super::sim::SimInstr::TRAP(vect) => AsmInstr::TRAP(vect),
};
StmtKind::Instr(ai)
},
None => {
let fill = Directive::Fill(PCOffset::Offset(super::Offset::new_trunc(word)));
StmtKind::Directive(fill)
},
};
Stmt { labels: vec![], nucleus, span: 0..0 }
})
.collect()
}