1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
//! This module implements the Ranked-DAG data structure. I's a data structure
//! that represents the edges between nodes in the dag as well as the leveling
//! of the nodes. A rank is the ordering of some nodes along the x-axis. Users
//! of this data structure may change the leveling of nodes, and the only
//! guarantee is that the nodes are assigned to some level.

use std::cmp;

/// The Ranked-DAG data structure.
pub struct DAG {
    /// A list of nodes in the dag.
    nodes: Vec<Node>,

    /// Places nodes in levels.
    ranks: RankType,
}

/// Used by users to keep track of nodes that are saved in the DAG.
#[derive(Copy, Clone, Default, PartialEq, PartialOrd, Eq, Ord, Hash, Debug)]
pub struct NodeHandle {
    idx: usize,
}

impl NodeHandle {
    pub fn new(x: usize) -> Self {
        NodeHandle { idx: x }
    }
    pub fn get_index(&self) -> usize {
        self.idx
    }
}

impl From<usize> for NodeHandle {
    fn from(idx: usize) -> Self {
        NodeHandle { idx }
    }
}

struct Node {
    // Points to other edges.
    successors: Vec<NodeHandle>,
    predecessors: Vec<NodeHandle>,
}

pub type RankType = Vec<Vec<NodeHandle>>;

impl Node {
    pub fn new() -> Self {
        Node {
            successors: Vec::new(),
            predecessors: Vec::new(),
        }
    }
}

/// Node iterator for iterating over nodes in the graph.
pub struct NodeIterator {
    curr: usize,
    last: usize,
}

impl Iterator for NodeIterator {
    type Item = NodeHandle;

    fn next(&mut self) -> Option<Self::Item> {
        if self.curr == self.last {
            return None;
        }

        let item = Some(NodeHandle::from(self.curr));
        self.curr += 1;
        item
    }
}

impl DAG {
    pub fn new() -> Self {
        DAG {
            nodes: Vec::new(),
            ranks: Vec::new(),
        }
    }

    pub fn clear(&mut self) {
        self.nodes.clear();
        self.ranks.clear();
    }

    pub fn iter(&self) -> NodeIterator {
        NodeIterator {
            curr: 0,
            last: self.nodes.len(),
        }
    }

    pub fn add_edge(&mut self, from: NodeHandle, to: NodeHandle) {
        self.nodes[from.idx].successors.push(to);
        self.nodes[to.idx].predecessors.push(from);
    }

    /// Remove an edge from \p from to \p to.
    /// \returns True if an edge was removed.
    pub fn remove_edge(&mut self, from: NodeHandle, to: NodeHandle) -> bool {
        let succ = &mut self.nodes[from.idx].successors;
        let mut removed_succ = false;

        if let Some(pos) = succ.iter().position(|x| *x == to) {
            succ.remove(pos);
            removed_succ = true;
        }

        let pred = &mut self.nodes[to.idx].predecessors;
        let mut removed_pred = false;
        if let Some(pos) = pred.iter().position(|x| *x == from) {
            pred.remove(pos);
            removed_pred = true;
        }

        // We must preserve the invariant that the pred-succ list must always
        // be up to date.
        assert_eq!(removed_pred, removed_succ);
        removed_pred
    }

    /// Create a new node.
    pub fn new_node(&mut self) -> NodeHandle {
        self.nodes.push(Node::new());
        let node = NodeHandle::new(self.nodes.len() - 1);
        self.add_element_to_rank(node, 0, false);
        node
    }

    /// Create \p n new nodes.
    pub fn new_nodes(&mut self, n: usize) {
        for _ in 0..n {
            self.nodes.push(Node::new());
            let node = NodeHandle::new(self.nodes.len() - 1);
            self.add_element_to_rank(node, 0, false);
        }
        self.verify();
    }

    pub fn successors(&self, from: NodeHandle) -> &Vec<NodeHandle> {
        &self.nodes[from.idx].successors
    }

    pub fn predecessors(&self, from: NodeHandle) -> &Vec<NodeHandle> {
        &self.nodes[from.idx].predecessors
    }

    pub fn single_pred(&self, from: NodeHandle) -> Option<NodeHandle> {
        if self.nodes[from.idx].predecessors.len() == 1 {
            return Some(self.nodes[from.idx].predecessors[0]);
        }
        None
    }

    pub fn single_succ(&self, from: NodeHandle) -> Option<NodeHandle> {
        if self.nodes[from.idx].successors.len() == 1 {
            return Some(self.nodes[from.idx].successors[0]);
        }
        None
    }

    pub fn verify(&self) {
        // Check that the node indices are valid.
        for node in &self.nodes {
            for edge in &node.successors {
                assert!(edge.idx < self.nodes.len());
            }
        }

        // Check that the graph is a DAG.
        for (i, node) in self.nodes.iter().enumerate() {
            let from = NodeHandle::from(i);
            for dest in node.successors.iter() {
                let reachable = self.is_reachable(*dest, from) && from != *dest;
                assert!(!reachable, "We found a cycle!");
            }
        }

        // Make sure that all of the nodes are in ranks.
        assert_eq!(self.count_nodes_in_ranks(), self.len());
    }

    pub fn len(&self) -> usize {
        self.nodes.len()
    }

    pub fn is_empty(&self) -> bool {
        self.nodes.is_empty()
    }

    /// \returns True if the node \to is reachable from the node \p from.
    /// This internal method is used for the verification of the graph.
    fn is_reachable_inner(
        &self,
        from: NodeHandle,
        to: NodeHandle,
        visited: &mut Vec<bool>,
    ) -> bool {
        if from == to {
            return true;
        }

        // Don't step into a cycle.
        if visited[from.idx] {
            return false;
        }

        // Push to the dfs stack.
        visited[from.idx] = true;

        let from_node = &self.nodes[from.idx];
        for edge in &from_node.successors {
            if self.is_reachable_inner(*edge, to, visited) {
                return true;
            }
        }

        // Pop from the dfs stack.
        visited[from.idx] = false;
        false
    }

    /// \returns True if there is a path from \p 'from' to \p 'to'.
    pub fn is_reachable(&self, from: NodeHandle, to: NodeHandle) -> bool {
        if from == to {
            return true;
        }

        let mut visited = Vec::new();
        visited.resize(self.nodes.len(), false);
        self.is_reachable_inner(from, to, &mut visited)
    }

    /// Return the topological sort order of the nodes in the dag.
    /// This is implemented as the reverse post order scan.
    fn topological_sort(&self) -> Vec<NodeHandle> {
        // A list of vectors in post-order.
        let mut order: Vec<NodeHandle> = Vec::new();

        // Marks that a node is in the worklist.
        let mut visited = Vec::new();
        visited.resize(self.nodes.len(), false);

        // A tuple of handle, and command:
        // true- force push.
        // false- this is a child to visit.
        let mut worklist: Vec<(NodeHandle, bool)> = Vec::new();

        // Add all of the values that we want to compute into the worklist.
        for n in self.iter() {
            worklist.push((n, false));
        }

        while !worklist.is_empty() {
            let (current, cmd) = worklist.pop().unwrap();

            // Handle 'push' commands.
            if cmd {
                order.push(current);
                continue;
            }

            // Don't visit visited nodes.
            if visited[current.idx] {
                continue;
            }

            visited[current.idx] = true;

            // Save this node after all of the children are handles.
            worklist.push((current, true));

            // Add the children to the worklist.
            let node = &self.nodes[current.idx];
            for edge in &node.successors {
                worklist.push((*edge, false));
            }
        }

        // Turn the post-order to a reverse post order.
        order.reverse();
        order
    }

    // The methods below are related to the rank (placing nodes in levels). //

    /// \returns the number of ranks in the dag.
    pub fn num_levels(&self) -> usize {
        self.ranks.len()
    }

    /// \return a mutable reference to a row at level \p level.
    pub fn row_mut(&mut self, level: usize) -> &mut Vec<NodeHandle> {
        assert!(level < self.ranks.len(), "Invalid rank");
        &mut self.ranks[level]
    }

    /// \return a reference to a row at level \p level.
    pub fn row(&self, level: usize) -> &Vec<NodeHandle> {
        assert!(level < self.ranks.len(), "Invalid rank");
        &self.ranks[level]
    }

    /// \return a reference to the whole rank data structure.
    pub fn ranks(&self) -> &RankType {
        &self.ranks
    }

    /// \return a mutable reference to the whole rank data structure.
    pub fn ranks_mut(&mut self) -> &mut RankType {
        &mut self.ranks
    }

    /// \returns True if \p elem is the first node in the row \p level.
    pub fn is_first_in_row(&self, elem: NodeHandle, level: usize) -> bool {
        if level >= self.ranks.len() || self.ranks[level].is_empty() {
            return false;
        }
        self.ranks[level][0] == elem
    }

    /// \returns True if \p elem is the last node in the row \p level.
    pub fn is_last_in_row(&self, elem: NodeHandle, level: usize) -> bool {
        if level >= self.ranks.len() || self.ranks[level].is_empty() {
            return false;
        }
        let last_idx = self.ranks[level].len() - 1;
        self.ranks[level][last_idx] == elem
    }

    /// Place the element \p elem at the nth level \p level. If the level does
    /// not exist then create it. If \p prepend is set then the node is inserted
    /// at the beginning of the rank. The node must not be in the rank when this
    /// method is called.
    fn add_element_to_rank(
        &mut self,
        elem: NodeHandle,
        level: usize,
        prepend: bool,
    ) {
        while self.ranks.len() < level + 1 {
            self.ranks.push(Vec::new());
        }

        if prepend {
            self.ranks[level].insert(0, elem);
        } else {
            self.ranks[level].push(elem);
        }
    }

    /// Places all of the nodes in ranks (levels).
    pub fn recompute_node_ranks(&mut self) {
        assert!(!self.is_empty(), "Sorting an empty graph");
        let order = self.topological_sort();
        let levels = self.compute_levels(&order);
        self.ranks.clear();
        for (i, level) in levels.iter().enumerate() {
            self.add_element_to_rank(NodeHandle::from(i), *level, false);
        }
    }

    /// \returns the number of nodes that are in ranks.
    /// This is used for verification of the dag.
    fn count_nodes_in_ranks(&self) -> usize {
        let mut cnt = 0;
        for row in self.ranks.iter() {
            cnt += row.len();
        }
        cnt
    }

    /// Move the node \p node to a new level \p new_level.
    /// Place the node before \p node, or at the end.
    pub fn update_node_rank_level(
        &mut self,
        node: NodeHandle,
        new_level: usize,
        insert_before: Option<NodeHandle>,
    ) {
        let curr_level = self.level(node);
        let level = &mut self.ranks[curr_level];
        let idx = level
            .iter()
            .position(|x| *x == node)
            .expect("node not found");
        level.remove(idx);

        // Make sure that the row exists.
        while self.ranks.len() < new_level + 1 {
            self.ranks.push(Vec::new());
        }

        if let Option::Some(marker) = insert_before {
            let row = &mut self.ranks[new_level];
            for i in 0..row.len() {
                if row[i] == marker {
                    row.insert(i, node);
                    return;
                }
            }
            panic!("Can't find the marker node in the array");
        }

        self.ranks[new_level].push(node);
        assert_eq!(self.level(node), new_level);
    }

    /// \returns the level of the node \p node in the rank.
    pub fn level(&self, node: NodeHandle) -> usize {
        assert!(node.get_index() < self.len(), "Node not in the dag");
        for (i, row) in self.ranks.iter().enumerate() {
            if row.contains(&node) {
                return i;
            }
        }
        panic!("Unexpected node. Is the graph ranked?");
    }

    /// Computes and returns the level of each node in the graph based
    /// on the traversal order \p order.
    fn compute_levels(&self, order: &[NodeHandle]) -> Vec<usize> {
        let mut levels: Vec<usize> = Vec::new();
        assert_eq!(order.len(), self.nodes.len());

        // Levels has the same layout as the DAG node list.
        levels.resize(self.nodes.len(), 0);

        // For each node in the order (starting with a node of level zero).
        for src in order {
            // Update the level of all successors.
            for dest in self.nodes[src.idx].successors.iter() {
                // Ignore self edges.
                if src.idx == dest.idx {
                    continue;
                }
                levels[dest.idx] =
                    cmp::max(levels[dest.idx], levels[src.idx] + 1);
            }
        }

        // For each node in the order.
        for src in order {
            for dest in self.nodes[src.idx].successors.iter() {
                assert!(levels[dest.idx] >= levels[src.idx]);
            }
        }

        levels
    }
}

impl Default for DAG {
    fn default() -> Self {
        Self::new()
    }
}

#[test]
fn test_simple_construction() {
    let mut g = DAG::new();
    let h0 = g.new_node();
    g.verify();

    let h1 = g.new_node();
    let h2 = g.new_node();
    let h3 = g.new_node();
    let h4 = g.new_node();

    assert_ne!(h0, h1);
    assert_ne!(h1, h2);

    g.add_edge(h0, h1);
    g.add_edge(h1, h2);
    g.add_edge(h0, h2);
    g.add_edge(h2, h3);
    g.add_edge(h3, h4);

    g.verify();

    let order = g.topological_sort();
    let levels = g.compute_levels(&order);
    assert_eq!(order.len(), g.len());
    assert_eq!(levels.len(), g.len());

    for i in 0..g.len() {
        println!("{}) node {},  level {}", i, order[i].idx, levels[i]);
    }
}

#[test]
fn test_rank_api() {
    let mut g = DAG::new();
    let h0 = g.new_node();
    let h1 = g.new_node();
    let h2 = g.new_node();

    g.add_edge(h0, h1);
    g.add_edge(h1, h2);

    g.recompute_node_ranks();
    g.verify();

    assert_eq!(g.level(h0), 0);
    assert_eq!(g.level(h1), 1);
    assert_eq!(g.level(h2), 2);

    let r1 = g.remove_edge(h0, h1);
    let r2 = g.remove_edge(h0, h1);
    // Should be able to remove the edge that we inserted.
    assert!(r1);
    // The edge should no longer be there!
    assert!(!r2);
}