1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use std::sync::Arc;

use futures_util::future::try_join_all;

use crate::{
    chain::{LLMChain, LLMChainBuilder},
    embedding::{openai::OpenAiEmbedder, Embedder},
    language_models::llm::LLM,
    llm::openai::OpenAI,
    prompt::HumanMessagePromptTemplate,
    semantic_router::{Index, MemoryIndex, RouteLayerBuilderError, Router},
    template_jinja2,
};

use super::{AggregationMethod, RouteLayer};

/// A builder for creating a `RouteLayer`.
///```rust,ignore
/// let captial_route = Router::new(
///     "captial",
///     &[
///         "Capital of France is Paris.",
///         "What is the captial of France?",
///     ],
/// );
/// let weather_route = Router::new(
///     "temperature",
///     &[
///         "What is the temperature?",
///         "Is it raining?",
///         "Is it cloudy?",
///     ],
/// );
/// let router_layer = RouteLayerBuilder::default()
///     .embedder(OpenAiEmbedder::default())
///     .add_route(captial_route)
///     .add_route(weather_route)
///     .aggregation_method(AggregationMethod::Sum)
///     .threshold(0.82)
///     .build()
///     .await
///     .unwrap();
/// ```
pub struct RouteLayerBuilder {
    embedder: Option<Arc<dyn Embedder>>,
    routes: Vec<Router>,
    threshold: Option<f64>,
    index: Option<Box<dyn Index>>,
    llm: Option<LLMChain>,
    top_k: usize,
    aggregation_method: AggregationMethod,
}
impl Default for RouteLayerBuilder {
    fn default() -> Self {
        Self::new()
            .embedder(OpenAiEmbedder::default())
            .llm(OpenAI::default())
            .index(MemoryIndex::new())
    }
}

impl RouteLayerBuilder {
    pub fn new() -> Self {
        Self {
            embedder: None,
            routes: Vec::new(),
            threshold: None,
            llm: None,
            index: None,
            top_k: 5,
            aggregation_method: AggregationMethod::Sum,
        }
    }

    pub fn top_k(mut self, top_k: usize) -> Self {
        let mut top_k = top_k;
        if top_k == 0 {
            log::warn!("top_k cannot be 0, setting it to 1");
            top_k = 1;
        }
        self.top_k = top_k;
        self
    }

    pub fn llm<L: LLM + 'static>(mut self, llm: L) -> Self {
        let prompt = HumanMessagePromptTemplate::new(template_jinja2!(
            "You should Generate the input for the following tool.
Tool description:{{description}}.
Input query context to generate the input for the tool :{{query}}

Tool Input:
",
            "description",
            "query"
        ));
        let chain = LLMChainBuilder::new()
            .prompt(prompt)
            .llm(llm)
            .build()
            .unwrap(); //safe to unwrap
        self.llm = Some(chain);
        self
    }

    pub fn index<I: Index + 'static>(mut self, index: I) -> Self {
        self.index = Some(Box::new(index));
        self
    }

    pub fn embedder<E: Embedder + 'static>(mut self, embedder: E) -> Self {
        self.embedder = Some(Arc::new(embedder));
        self
    }

    /// The threshold is the minimum similarity score that a route must have to be considered.
    /// This depends on the similarity metric used by the embedder.
    /// For open ai text-embedding-ada-002, the best threshold is 0.82
    pub fn threshold(mut self, threshold: f64) -> Self {
        self.threshold = Some(threshold);
        self
    }

    pub fn add_route(mut self, route: Router) -> Self {
        self.routes.push(route);
        self
    }

    pub fn aggregation_method(mut self, aggregation_method: AggregationMethod) -> Self {
        self.aggregation_method = aggregation_method;
        self
    }

    pub async fn build(mut self) -> Result<RouteLayer, RouteLayerBuilderError> {
        // Check if any routers lack an embedding and there's no global embedder provided.
        if self.embedder.is_none() {
            return Err(RouteLayerBuilderError::MissingEmbedder);
        }

        if self.llm.is_none() {
            return Err(RouteLayerBuilderError::MissingLLM);
        }

        if self.index.is_none() {
            return Err(RouteLayerBuilderError::MissingIndex);
        }

        let mut router = RouteLayer {
            embedder: self.embedder.unwrap(), //it's safe to unwrap here because we checked for None above
            index: self.index.unwrap(),
            llm: self.llm.unwrap(),
            threshold: self.threshold.unwrap_or(0.82),
            top_k: self.top_k,
            aggregation_method: self.aggregation_method,
        };

        let embedding_futures = self
            .routes
            .iter_mut()
            .filter_map(|route| {
                if route.embedding.is_none() {
                    Some(router.embedder.embed_documents(&route.utterances))
                } else {
                    None
                }
            })
            .collect::<Vec<_>>();

        let embeddings = try_join_all(embedding_futures).await?;

        for (route, embedding) in self
            .routes
            .iter_mut()
            .filter(|r| r.embedding.is_none())
            .zip(embeddings)
        {
            route.embedding = Some(embedding);
        }

        // Add routes to the index.
        router.index.add(&self.routes).await?;

        Ok(router)
    }
}