1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
use std::pin::Pin;
use async_trait::async_trait;
use futures::Stream;
use serde_json::Value;
use crate::{
chain::{
load_stuff_qa, options::ChainCallOptions, Chain, ChainError, LLMChain, StuffQAPromptBuilder,
},
language_models::{llm::LLM, GenerateResult},
prompt::PromptArgs,
schemas::{Document, StreamData},
};
const COMBINE_DOCUMENTS_DEFAULT_INPUT_KEY: &str = "input_documents";
const COMBINE_DOCUMENTS_DEFAULT_OUTPUT_KEY: &str = "text";
const COMBINE_DOCUMENTS_DEFAULT_DOCUMENT_VARIABLE_NAME: &str = "context";
const STUFF_DOCUMENTS_DEFAULT_SEPARATOR: &str = "\n\n";
pub struct StuffDocument {
llm_chain: LLMChain,
input_key: String,
document_variable_name: String,
separator: String,
}
impl StuffDocument {
pub fn new(llm_chain: LLMChain) -> Self {
Self {
llm_chain,
input_key: COMBINE_DOCUMENTS_DEFAULT_INPUT_KEY.to_string(),
document_variable_name: COMBINE_DOCUMENTS_DEFAULT_DOCUMENT_VARIABLE_NAME.to_string(),
separator: STUFF_DOCUMENTS_DEFAULT_SEPARATOR.to_string(),
}
}
fn join_documents(&self, docs: Vec<Document>) -> String {
docs.iter()
.map(|doc| doc.page_content.clone())
.collect::<Vec<_>>()
.join(&self.separator)
}
pub fn qa_prompt_builder<'a>(&self) -> StuffQAPromptBuilder<'a> {
StuffQAPromptBuilder::new()
}
/// load_stuff_qa return an instance of StuffDocument
/// with a prompt desiged for question ansering
///
/// # Example
/// ```rust,ignore
///
/// let llm = OpenAI::default();
/// let chain = StuffDocument::load_stuff_qa(llm);
///
/// let input = chain
/// .qa_prompt_builder()
/// .documents(&[
/// Document::new(format!(
/// "\nQuestion: {}\nAnswer: {}\n",
/// "Which is the favorite text editor of luis", "Nvim"
/// )),
/// Document::new(format!(
/// "\nQuestion: {}\nAnswer: {}\n",
/// "How old is Luis", "24"
/// )),
/// ])
/// .question("How old is luis and whats his favorite text editor")
/// .build();
///
/// let ouput = chain.invoke(input).await.unwrap();
///
/// println!("{}", ouput);
/// ```
///
pub fn load_stuff_qa<L: LLM + 'static>(llm: L) -> Self {
load_stuff_qa(llm, None)
}
/// load_stuff_qa_with_options return an instance of StuffDocument
/// with a prompt desiged for question ansering
///
/// # Example
/// ```rust,ignore
///
/// let llm = OpenAI::default();
/// let chain = StuffDocument::load_stuff_qa_with_options(llm,ChainCallOptions::default());
///
/// let input = chain
/// .qa_prompt_builder()
/// .documents(&[
/// Document::new(format!(
/// "\nQuestion: {}\nAnswer: {}\n",
/// "Which is the favorite text editor of luis", "Nvim"
/// )),
/// Document::new(format!(
/// "\nQuestion: {}\nAnswer: {}\n",
/// "How old is Luis", "24"
/// )),
/// ])
/// .question("How old is luis and whats his favorite text editor")
/// .build();
///
/// let ouput = chain.invoke(input).await.unwrap();
///
/// println!("{}", ouput);
/// ```
///
pub fn load_stuff_qa_with_options<L: LLM + 'static>(llm: L, opt: ChainCallOptions) -> Self {
load_stuff_qa(llm, Some(opt))
}
}
#[async_trait]
impl Chain for StuffDocument {
async fn call(&self, input_variables: PromptArgs) -> Result<GenerateResult, ChainError> {
let docs = input_variables
.get(&self.input_key)
.ok_or_else(|| ChainError::MissingInputVariable(self.input_key.clone()))?;
let documents: Vec<Document> = serde_json::from_value(docs.clone()).map_err(|e| {
ChainError::IncorrectInputVariable {
source: e,
expected_type: "Vec<Document>".to_string(),
}
})?;
let mut input_values = input_variables.clone();
input_values.insert(
self.document_variable_name.clone(),
Value::String(self.join_documents(documents)),
);
self.llm_chain.call(input_values).await
}
async fn stream(
&self,
input_variables: PromptArgs,
) -> Result<Pin<Box<dyn Stream<Item = Result<StreamData, ChainError>> + Send>>, ChainError>
{
self.llm_chain.stream(input_variables).await
}
fn get_input_keys(&self) -> Vec<String> {
vec![self.input_key.clone()]
}
}