1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
use std::{collections::HashMap, pin::Pin};
use async_trait::async_trait;
use futures::Stream;
use serde_json::{json, Value};
use crate::{language_models::GenerateResult, prompt::PromptArgs, schemas::StreamData};
use super::ChainError;
pub(crate) const DEFAULT_OUTPUT_KEY: &str = "output";
pub(crate) const DEFAULT_RESULT_KEY: &str = "generate_result";
#[async_trait]
pub trait Chain: Sync + Send {
/// Call the `Chain` and receive as output the result of the generation process along with
/// additional information like token consumption. The input is a set of variables passed
/// as a `PromptArgs` hashmap.
///
/// # Example
///
/// ```rust,ignore
/// # use crate::my_crate::{Chain, ConversationalChainBuilder, OpenAI, OpenAIModel, SimpleMemory, PromptArgs, prompt_args};
/// # async {
/// let llm = OpenAI::default().with_model(OpenAIModel::Gpt35);
/// let memory = SimpleMemory::new();
///
/// let chain = ConversationalChainBuilder::new()
/// .llm(llm)
/// .memory(memory.into())
/// .build().expect("Error building ConversationalChain");
///
/// let input_variables = prompt_args! {
/// "input" => "Im from Peru",
/// };
///
/// match chain.call(input_variables).await {
/// Ok(result) => {
/// println!("Result: {:?}", result);
/// },
/// Err(e) => panic!("Error calling Chain: {:?}", e),
/// };
/// # };
/// ```
async fn call(&self, input_variables: PromptArgs) -> Result<GenerateResult, ChainError>;
/// Invoke the `Chain` and receive just the generation result as a String.
/// The input is a set of variables passed as a `PromptArgs` hashmap.
///
/// # Example
///
/// ```rust,ignore
/// # use crate::my_crate::{Chain, ConversationalChainBuilder, OpenAI, OpenAIModel, SimpleMemory, PromptArgs, prompt_args};
/// # async {
/// let llm = OpenAI::default().with_model(OpenAIModel::Gpt35);
/// let memory = SimpleMemory::new();
///
/// let chain = ConversationalChainBuilder::new()
/// .llm(llm)
/// .memory(memory.into())
/// .build().expect("Error building ConversationalChain");
///
/// let input_variables = prompt_args! {
/// "input" => "Im from Peru",
/// };
///
/// match chain.invoke(input_variables).await {
/// Ok(result) => {
/// println!("Result: {:?}", result);
/// },
/// Err(e) => panic!("Error invoking Chain: {:?}", e),
/// };
/// # };
/// ```
async fn invoke(&self, input_variables: PromptArgs) -> Result<String, ChainError> {
self.call(input_variables)
.await
.map(|result| result.generation)
}
/// Execute the `Chain` and return the result of the generation process
/// along with additional information like token consumption formatted as a `HashMap`.
/// The input is a set of variables passed as a `PromptArgs` hashmap.
/// The key for the generated output is specified by the `get_output_keys`
/// method (default key is `output`).
///
/// # Example
///
/// ```rust,ignore
/// # use crate::my_crate::{Chain, ConversationalChainBuilder, OpenAI, OpenAIModel, SimpleMemory, PromptArgs, prompt_args};
/// # async {
/// let llm = OpenAI::default().with_model(OpenAIModel::Gpt35);
/// let memory = SimpleMemory::new();
///
/// let chain = ConversationalChainBuilder::new()
/// .llm(llm)
/// .memory(memory.into())
/// .output_key("name")
/// .build().expect("Error building ConversationalChain");
///
/// let input_variables = prompt_args! {
/// "input" => "Im from Peru",
/// };
///
/// match chain.execute(input_variables).await {
/// Ok(result) => {
/// println!("Result: {:?}", result);
/// },
/// Err(e) => panic!("Error executing Chain: {:?}", e),
/// };
/// # };
/// ```
async fn execute(
&self,
input_variables: PromptArgs,
) -> Result<HashMap<String, Value>, ChainError> {
log::info!("Using defualt implementation");
let result = self.call(input_variables.clone()).await?;
let mut output = HashMap::new();
let output_key = self
.get_output_keys()
.get(0)
.unwrap_or(&DEFAULT_OUTPUT_KEY.to_string())
.clone();
output.insert(output_key, json!(result.generation));
output.insert(DEFAULT_RESULT_KEY.to_string(), json!(result));
Ok(output)
}
/// Stream the `Chain` and get an asynchronous stream of chain generations.
/// The input is a set of variables passed as a `PromptArgs` hashmap.
/// If the chain have memroy, the tream method will not be able to automaticaly
/// set the memroy, bocause it will not know if the how to extract the output message
/// out of the stram
/// # Example
///
/// ```rust,ignore
/// # use futures::StreamExt;
/// # use crate::my_crate::{Chain, LLMChainBuilder, OpenAI, fmt_message, fmt_template,
/// # HumanMessagePromptTemplate, prompt_args, Message, template_fstring};
/// # async {
/// let open_ai = OpenAI::default();
///
///let prompt = message_formatter![
///fmt_message!(Message::new_system_message(
///"You are world class technical documentation writer."
///)),
///fmt_template!(HumanMessagePromptTemplate::new(template_fstring!(
/// "{input}", "input"
///)))
///];
///
/// let chain = LLMChainBuilder::new()
/// .prompt(prompt)
/// .llm(open_ai.clone())
/// .build()
/// .unwrap();
///
/// let mut stream = chain.stream(
/// prompt_args! {
/// "input" => "Who is the writer of 20,000 Leagues Under the Sea?"
/// }).await.unwrap();
///
/// while let Some(result) = stream.next().await {
/// match result {
/// Ok(value) => {
/// println!("Content: {}", value.content);
/// },
/// Err(e) => panic!("Error invoking LLMChain: {:?}", e),
/// }
/// };
/// # };
/// ```
///
async fn stream(
&self,
_input_variables: PromptArgs,
) -> Result<Pin<Box<dyn Stream<Item = Result<StreamData, ChainError>> + Send>>, ChainError>
{
log::warn!("stream not implemented for this chain");
unimplemented!()
}
// Get the input keys of the prompt
fn get_input_keys(&self) -> Vec<String> {
log::info!("Using defualt implementation");
return vec![];
}
fn get_output_keys(&self) -> Vec<String> {
log::info!("Using defualt implementation");
return vec![String::from(DEFAULT_OUTPUT_KEY)];
}
}