1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
use async_trait::async_trait;
use serde_json::Value;

use crate::{
    chain::{chain_trait::Chain, llm_chain::LLMChain, ChainError},
    language_models::{GenerateResult, TokenUsage},
    prompt::PromptArgs,
    prompt_args,
    tools::SQLDatabase,
};

use super::{
    QUERY_PREFIX_WITH, SQL_CHAIN_DEFAULT_INPUT_KEY_QUERY, SQL_CHAIN_DEFAULT_INPUT_KEY_TABLE_NAMES,
    STOP_WORD,
};

pub struct SqlChainPromptBuilder {
    query: String,
}
impl SqlChainPromptBuilder {
    pub fn new() -> Self {
        Self {
            query: "".to_string(),
        }
    }

    pub fn query<S: Into<String>>(mut self, input: S) -> Self {
        self.query = input.into();
        self
    }

    pub fn build(self) -> PromptArgs {
        prompt_args! {
          SQL_CHAIN_DEFAULT_INPUT_KEY_QUERY  => self.query,
        }
    }
}

pub struct SQLDatabaseChain {
    pub(crate) llmchain: LLMChain,
    pub(crate) top_k: usize,
    pub(crate) database: SQLDatabase,
}

/// SQLChain let you interact with a db in human lenguage
///
/// The input variable name is `query`.
/// Example
/// ```rust,ignore
/// # async {
/// let options = ChainCallOptions::default();
/// let llm = OpenAI::default();
///
/// let db = std::env::var("DATABASE_URL").expect("DATABASE_URL must be set");
/// let engine = PostgreSQLEngine::new(&db).await.unwrap();
/// let db = SQLDatabaseBuilder::new(engine).build().await.unwrap();
/// let chain = SQLDatabaseChainBuilder::new()
///     .llm(llm)
///     .top_k(4)
///     .database(db)
///     .options(options)
///     .build()
///     .expect("Failed to build LLMChain");
///
/// let input_variables = prompt_args! {
///     "query" => "Whats the phone number of luis"
///   };
///   //OR
/// let input_variables = chain.prompt_builder()
///     .query("Whats the phone number of luis")
///     .build();
/// match chain.invoke(input_variables).await {
///    Ok(result) => {
///     println!("Result: {:?}", result);
/// }
/// Err(e) => panic!("Error invoking LLMChain: {:?}", e),
/// }
///
/// }
/// ```
impl SQLDatabaseChain {
    pub fn prompt_builder(&self) -> SqlChainPromptBuilder {
        SqlChainPromptBuilder::new()
    }
}

#[async_trait]
impl Chain for SQLDatabaseChain {
    fn get_input_keys(&self) -> Vec<String> {
        self.llmchain.get_input_keys()
    }

    async fn call(&self, input_variables: PromptArgs) -> Result<GenerateResult, ChainError> {
        let mut token_usage: Option<TokenUsage> = None;

        let query = input_variables
            .get(SQL_CHAIN_DEFAULT_INPUT_KEY_QUERY)
            .ok_or_else(|| {
                ChainError::MissingInputVariable(SQL_CHAIN_DEFAULT_INPUT_KEY_QUERY.to_string())
            })?
            .to_string();

        let mut tables: Vec<String> = Vec::new();
        if let Some(value) = input_variables.get(SQL_CHAIN_DEFAULT_INPUT_KEY_TABLE_NAMES) {
            if let serde_json::Value::Array(array) = value {
                for item in array {
                    if let serde_json::Value::String(str) = item {
                        tables.push(str.clone());
                    }
                }
            }
        }

        let tables_info = self
            .database
            .table_info(&tables)
            .await
            .map_err(|e| ChainError::DatabaseError(e.to_string()))?;

        let mut llm_inputs = prompt_args! {
            "input"=> query.clone() + QUERY_PREFIX_WITH,
            "top_k"=> self.top_k,
            "dialect"=> self.database.dialect().to_string(),
            "table_info"=> tables_info,

        };

        let output = self.llmchain.call(llm_inputs.clone()).await?;
        if let Some(tokens) = output.tokens {
            token_usage = Some(tokens);
        }

        let sql_query = output.generation.trim();
        log::debug!("output: {:?}", sql_query);
        let query_result = self
            .database
            .query(sql_query)
            .await
            .map_err(|e| ChainError::DatabaseError(e.to_string()))?;

        llm_inputs.insert(
            "input".to_string(),
            Value::from(format!(
                "{}{}{}{}{}",
                &query, QUERY_PREFIX_WITH, sql_query, STOP_WORD, &query_result,
            )),
        );

        let output = self.llmchain.call(llm_inputs).await?;
        if let Some(tokens) = output.tokens {
            if let Some(general_result) = token_usage.as_mut() {
                general_result.completion_tokens += tokens.completion_tokens;
                general_result.total_tokens += tokens.total_tokens;
            }
        }

        let strs: Vec<&str> = output
            .generation
            .split("\n\n")
            .next()
            .unwrap_or("")
            .split("Answer:")
            .collect();
        let mut output = strs[0];
        if strs.len() > 1 {
            output = strs[1];
        }
        output = output.trim();
        Ok(GenerateResult {
            generation: output.to_string(),
            tokens: token_usage,
        })
    }
    async fn invoke(&self, input_variables: PromptArgs) -> Result<String, ChainError> {
        let result = self.call(input_variables).await?;
        Ok(result.generation)
    }
}