1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
use std::{error::Error, pin::Pin, sync::Arc};

use async_openai::{
    config::OpenAIConfig,
    types::{
        ChatCompletionFunctions, ChatCompletionFunctionsArgs,
        ChatCompletionRequestAssistantMessageArgs, ChatCompletionRequestMessage,
        ChatCompletionRequestSystemMessageArgs, ChatCompletionRequestUserMessageArgs,
        CreateChatCompletionRequest, CreateChatCompletionRequestArgs,
    },
    Client,
};
use async_trait::async_trait;
use futures::{Future, StreamExt};
use tokio::sync::Mutex;

use crate::{
    language_models::{
        llm::LLM,
        options::{CallOptions, FunctionCallBehavior, FunctionDefinition},
        GenerateResult, TokenUsage,
    },
    schemas::messages::{Message, MessageType},
};

pub enum OpenAIModel {
    Gpt35,
    Gpt4,
    Gpt4Turbo,
}

impl ToString for OpenAIModel {
    fn to_string(&self) -> String {
        match self {
            OpenAIModel::Gpt35 => "gpt-3.5-turbo".to_string(),
            OpenAIModel::Gpt4 => "gpt-4".to_string(),
            OpenAIModel::Gpt4Turbo => "gpt-4-turbo-preview".to_string(),
        }
    }
}

pub struct OpenAI {
    config: OpenAIConfig,
    model: OpenAIModel,
    stop_words: Option<Vec<String>>,
    max_tokens: u16,
    temperature: f32,
    top_p: f32,
    frequency_penalty: f32,
    presence_penalty: f32,
    function_call_behavior: Option<FunctionCallBehavior>,
    functions: Option<Vec<FunctionDefinition>>,
    streaming_func: Option<
        Arc<
            Mutex<dyn FnMut(String) -> Pin<Box<dyn Future<Output = Result<(), ()>> + Send>> + Send>,
        >,
    >,
}

impl Into<Box<dyn LLM>> for OpenAI {
    fn into(self) -> Box<dyn LLM> {
        Box::new(self)
    }
}

impl Default for OpenAI {
    fn default() -> Self {
        Self {
            config: OpenAIConfig::default(),
            model: OpenAIModel::Gpt35,
            stop_words: None,
            max_tokens: 256,
            temperature: 0.0,
            top_p: 1.0,
            frequency_penalty: 0.0,
            presence_penalty: 0.0,
            function_call_behavior: None,
            functions: None,
            streaming_func: None,
        }
    }
}

impl OpenAI {
    pub fn new(opt: CallOptions) -> Self {
        Self {
            config: OpenAIConfig::default(),
            model: OpenAIModel::Gpt35,
            stop_words: opt.stop_words,
            max_tokens: opt.max_tokens.unwrap_or(256),
            temperature: opt.temperature.unwrap_or(0.0),
            top_p: opt.top_p.unwrap_or(1.0),
            frequency_penalty: opt.frequency_penalty.unwrap_or(0.0),
            presence_penalty: opt.presence_penalty.unwrap_or(0.0),
            function_call_behavior: opt.function_call_behavior,
            functions: opt.functions,
            streaming_func: opt.streaming_func,
        }
    }

    pub fn with_model(mut self, model: OpenAIModel) -> Self {
        self.model = model;
        self
    }

    pub fn with_api_key<S: Into<String>>(mut self, api_key: S) -> Self {
        self.config = OpenAIConfig::new().with_api_key(api_key);
        self
    }
}

#[async_trait]
impl LLM for OpenAI {
    async fn generate(&self, prompt: &[Message]) -> Result<GenerateResult, Box<dyn Error>> {
        let client = Client::with_config(self.config.clone());
        let request = self.generate_request(prompt)?;
        match &self.streaming_func {
            Some(func) => {
                let mut stream = client.chat().create_stream(request).await?;
                let mut complete_response = String::new();
                while let Some(result) = stream.next().await {
                    match result {
                        Ok(response) => {
                            for chat_choice in response.choices.iter() {
                                if let Some(ref content) = chat_choice.delta.content {
                                    let mut func = func.lock().await;
                                    let _ = func(content.clone()).await;
                                    complete_response.push_str(content);
                                }
                            }
                        }
                        Err(err) => {
                            eprintln!("Error from streaming response: {:?}", err);
                        }
                    }
                }
                let mut generate_result = GenerateResult::default();
                generate_result.generation = complete_response;
                Ok(generate_result)
            }
            None => {
                let response = client.chat().create(request).await?;
                let mut generate_result = GenerateResult::default();

                if let Some(usage) = response.usage {
                    generate_result.tokens = Some(TokenUsage {
                        prompt_tokens: usage.prompt_tokens,
                        completion_tokens: usage.completion_tokens,
                        total_tokens: usage.total_tokens,
                    });
                }

                if let Some(choice) = response.choices.first() {
                    generate_result.generation = choice.message.content.clone().unwrap_or_default();
                } else {
                    generate_result.generation = "".to_string();
                }

                Ok(generate_result)
            }
        }
    }

    async fn invoke(&self, prompt: &str) -> Result<String, Box<dyn Error>> {
        self.generate(&[Message::new_human_message(prompt)])
            .await
            .map(|res| res.generation)
    }

    fn with_options(&mut self, options: CallOptions) {
        self.max_tokens = options.max_tokens.unwrap_or(256);
        self.stop_words = options.stop_words;
        self.temperature = options.temperature.unwrap_or(0.7);
        self.top_p = options.top_p.unwrap_or(1.0);
        self.frequency_penalty = options.frequency_penalty.unwrap_or(0.0);
        self.presence_penalty = options.presence_penalty.unwrap_or(0.0);
        self.function_call_behavior = options.function_call_behavior;
        self.functions = options.functions;
        self.streaming_func = options.streaming_func;
    }
}

impl OpenAI {
    fn to_openai_messages(
        &self,
        messages: &[Message],
    ) -> Result<Vec<ChatCompletionRequestMessage>, Box<dyn Error>> {
        let mut openai_messages: Vec<ChatCompletionRequestMessage> = Vec::new();
        for m in messages {
            match m.message_type {
                MessageType::AIMessage => openai_messages.push(
                    ChatCompletionRequestAssistantMessageArgs::default()
                        .content(m.content.clone())
                        .build()?
                        .into(),
                ),
                MessageType::HumanMessage => openai_messages.push(
                    ChatCompletionRequestUserMessageArgs::default()
                        .content(m.content.clone())
                        .build()?
                        .into(),
                ),
                MessageType::SystemMessage => openai_messages.push(
                    ChatCompletionRequestSystemMessageArgs::default()
                        .content(m.content.clone())
                        .build()?
                        .into(),
                ),
            }
        }
        Ok(openai_messages)
    }

    fn generate_request(
        &self,
        messages: &[Message],
    ) -> Result<CreateChatCompletionRequest, Box<dyn Error>> {
        let messages: Vec<ChatCompletionRequestMessage> = self.to_openai_messages(messages)?;
        let mut request_builder = CreateChatCompletionRequestArgs::default();
        request_builder.max_tokens(self.max_tokens);
        request_builder.model(self.model.to_string());
        if let Some(stop_words) = &self.stop_words {
            request_builder.stop(stop_words);
        }

        if let Some(behavior) = &self.functions {
            let mut functions: Vec<ChatCompletionFunctions> = Vec::new();
            for f in behavior.iter() {
                let tool = ChatCompletionFunctionsArgs::default()
                    .name(f.name.clone())
                    .description(f.description.clone())
                    .parameters(f.parameters.clone())
                    .build()?;
                functions.push(tool);
            }
            request_builder.functions(functions);
        }

        if let Some(behavior) = self.function_call_behavior {
            match behavior {
                FunctionCallBehavior::Auto => request_builder.function_call("auto"),
                FunctionCallBehavior::None => request_builder.function_call("none"),
            };
        }
        request_builder.messages(messages);
        Ok(request_builder.build()?)
    }
}
#[cfg(test)]
mod tests {
    use super::*;
    use tokio::test;

    #[test]
    async fn test_ivoke() {
        let message_complete = Arc::new(Mutex::new(String::new()));

        // Define the streaming function
        // This function will append the content received from the stream to `message_complete`
        let streaming_func = {
            let message_complete = message_complete.clone();
            move |content: String| {
                let message_complete = message_complete.clone();
                async move {
                    let mut message_complete_lock = message_complete.lock().await;
                    println!("Content: {:?}", content);
                    message_complete_lock.push_str(&content);
                    Ok(())
                }
            }
        };
        let options = CallOptions::new().with_streaming_func(streaming_func);
        // Setup the OpenAI client with the necessary options
        let open_ai = OpenAI::new(options).with_model(OpenAIModel::Gpt35); // You can change the model as needed

        // Define a set of messages to send to the generate function

        // Call the generate function
        match open_ai.invoke("hola").await {
            Ok(result) => {
                // Print the response from the generate function
                println!("Generate Result: {:?}", result);
                println!("Message Complete: {:?}", message_complete.lock().await);
            }
            Err(e) => {
                // Handle any errors
                eprintln!("Error calling generate: {:?}", e);
            }
        }
    }

    #[test]
    async fn test_generate_function() {
        let message_complete = Arc::new(Mutex::new(String::new()));

        // Define the streaming function
        // This function will append the content received from the stream to `message_complete`
        let streaming_func = {
            let message_complete = message_complete.clone();
            move |content: String| {
                let message_complete = message_complete.clone();
                async move {
                    let mut message_complete_lock = message_complete.lock().await;
                    println!("Content: {:?}", content);
                    message_complete_lock.push_str(&content);
                    Ok(())
                }
            }
        };
        // Define the streaming function as an async block without capturing external references directly
        let options = CallOptions::new().with_streaming_func(streaming_func);
        // Setup the OpenAI client with the necessary options
        let open_ai = OpenAI::new(options).with_model(OpenAIModel::Gpt35); // You can change the model as needed

        // Define a set of messages to send to the generate function
        let messages = vec![Message::new_human_message("Hello, how are you?")];

        // Call the generate function
        match open_ai.generate(&messages).await {
            Ok(result) => {
                // Print the response from the generate function
                println!("Generate Result: {:?}", result);
                println!("Message Complete: {:?}", message_complete.lock().await);
            }
            Err(e) => {
                // Handle any errors
                eprintln!("Error calling generate: {:?}", e);
            }
        }
    }
}