Expand description
Eigen decomposition of Hermitian matrices using Lanczos algorithm
Using Lanczos algorithm to estimate the extremal Eigen values and Eigen vectors of an Symmetrics Hermitian matrix.
Supports both dense and sparse matrices via nalgebra_sparse.
Works well for large sparse matrices
§Examples
use lanczos::{Hermitian, Order};
let eigen = matrix.eigsh(50, Order::Smallest);
// Sorted by eigenvalue in ascending order
eprintln!("{}", eigen.eigenvalues);
// Columns sorted according to eigenvalues
eprintln!("{}", eigen.eigenvectors);
// Second smallest eigen value
eprintln!("{}", eigen.eigenvalues[1]);
// Eigen vector corresponding to the second smallest eigen value
eprintln!("{}", eigen.eigenvectors.column(1));
Structs§
- Hermitian
Eigen - Eigen decomposition of an Hermitian matrix