1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::sync::Arc;

use arrow_array::{RecordBatch, UInt64Array};
use arrow_schema::{DataType, Field, Schema, SchemaRef};
use async_trait::async_trait;
use datafusion::physical_plan::{
    DisplayAs, DisplayFormatType, ExecutionPlan, Partitioning, RecordBatchStream,
};
use futures::{stream::BoxStream, Stream, StreamExt, TryFutureExt};
use lance_core::{utils::address::RowAddress, Error, Result, ROW_ID_FIELD};
use lance_index::{
    scalar::{
        expression::{ScalarIndexExpr, ScalarIndexLoader},
        ScalarIndex,
    },
    DatasetIndexExt,
};
use lance_table::format::Fragment;
use pin_project::pin_project;
use roaring::RoaringBitmap;
use snafu::{location, Location};
use tracing::{debug_span, instrument};

use crate::{
    index::{prefilter::PreFilter, DatasetIndexInternalExt},
    Dataset,
};

lazy_static::lazy_static! {
    pub static ref SCALAR_INDEX_SCHEMA: SchemaRef = Arc::new(Schema::new(vec![Field::new("result".to_string(), DataType::Binary, true)]));
}

#[async_trait]
impl ScalarIndexLoader for Dataset {
    async fn load_index(&self, name: &str) -> Result<Arc<dyn ScalarIndex>> {
        let idx = self
            .load_scalar_index_for_column(name)
            .await?
            .ok_or_else(|| Error::Internal {
                message: format!("Scanner created plan for index query on {} but no index on dataset for that column", name),
                location: location!()
            })?;
        self.open_scalar_index(name, &idx.uuid.to_string()).await
    }
}

/// An execution node that performs a scalar index search
///
/// This does not actually scan any data.  We only look through the index to determine
/// the row ids that match the query.  The output of this node is a row id mask (serialized
/// into a record batch)
///
/// If the actual IDs are needed then use MaterializeIndexExec instead
#[derive(Debug)]
pub struct ScalarIndexExec {
    dataset: Arc<Dataset>,
    expr: ScalarIndexExpr,
}

impl DisplayAs for ScalarIndexExec {
    fn fmt_as(&self, t: DisplayFormatType, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(f, "ScalarIndexQuery: query={}", self.expr)
            }
        }
    }
}

impl ScalarIndexExec {
    pub fn new(dataset: Arc<Dataset>, expr: ScalarIndexExpr) -> Self {
        Self { dataset, expr }
    }

    async fn do_execute(expr: ScalarIndexExpr, dataset: Arc<Dataset>) -> Result<RecordBatch> {
        let query_result = expr.evaluate(dataset.as_ref()).await?;
        let query_result_arr = query_result.into_arrow()?;
        Ok(RecordBatch::try_new(
            SCALAR_INDEX_SCHEMA.clone(),
            vec![Arc::new(query_result_arr)],
        )?)
    }
}

#[pin_project]
struct StreamWithSchema {
    #[pin]
    stream: BoxStream<'static, datafusion::common::Result<RecordBatch>>,
    schema: Arc<Schema>,
}

impl Stream for StreamWithSchema {
    type Item = datafusion::common::Result<RecordBatch>;

    fn poll_next(
        self: std::pin::Pin<&mut Self>,
        cx: &mut std::task::Context<'_>,
    ) -> std::task::Poll<Option<Self::Item>> {
        let this = self.project();
        this.stream.poll_next(cx)
    }
}

impl RecordBatchStream for StreamWithSchema {
    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }
}

impl ExecutionPlan for ScalarIndexExec {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn schema(&self) -> SchemaRef {
        SCALAR_INDEX_SCHEMA.clone()
    }

    fn output_partitioning(&self) -> datafusion::physical_plan::Partitioning {
        Partitioning::RoundRobinBatch(1)
    }

    fn output_ordering(&self) -> Option<&[datafusion::physical_expr::PhysicalSortExpr]> {
        // No guarantee a scalar index scan will return row ids in any meaningful order
        None
    }

    fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
        vec![]
    }

    fn with_new_children(
        self: Arc<Self>,
        _children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> datafusion::error::Result<Arc<dyn ExecutionPlan>> {
        todo!()
    }

    fn execute(
        &self,
        _partition: usize,
        _context: Arc<datafusion::execution::context::TaskContext>,
    ) -> datafusion::error::Result<datafusion::physical_plan::SendableRecordBatchStream> {
        let batch_fut = Self::do_execute(self.expr.clone(), self.dataset.clone());
        let stream = futures::stream::iter(vec![batch_fut])
            .then(|batch_fut| batch_fut.map_err(|err| err.into()))
            .boxed()
            as BoxStream<'static, datafusion::common::Result<RecordBatch>>;
        Ok(Box::pin(StreamWithSchema {
            schema: SCALAR_INDEX_SCHEMA.clone(),
            stream,
        }))
    }

    fn statistics(&self) -> datafusion::error::Result<datafusion::physical_plan::Statistics> {
        todo!()
    }
}

lazy_static::lazy_static! {
    pub static ref MATERIALIZE_INDEX_SCHEMA: SchemaRef = Arc::new(Schema::new(vec![ROW_ID_FIELD.clone()]));
}

/// An execution node that performs a scalar index search and materializes the mask into row ids
///
/// First, the index is searched to determine the mask that should be applied.  Then, we take the
/// list of fragments, iterate through all possible row ids, and materialize the row ids that satisfy
/// the mask.  The output of this node is a list of row ids suitable for use in a take operation.
#[derive(Debug)]
pub struct MaterializeIndexExec {
    dataset: Arc<Dataset>,
    expr: ScalarIndexExpr,
    fragments: Arc<Vec<Fragment>>,
}

impl DisplayAs for MaterializeIndexExec {
    fn fmt_as(&self, t: DisplayFormatType, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(f, "MaterializeIndex: query={}", self.expr)
            }
        }
    }
}

struct FragIdIter {
    src: Arc<Vec<Fragment>>,
    frag_idx: usize,
    idx_in_frag: usize,
}

impl FragIdIter {
    fn new(src: Arc<Vec<Fragment>>) -> Self {
        Self {
            src,
            frag_idx: 0,
            idx_in_frag: 0,
        }
    }
}

impl Iterator for FragIdIter {
    type Item = u64;

    fn next(&mut self) -> Option<Self::Item> {
        while self.frag_idx < self.src.len() {
            let frag = &self.src[self.frag_idx];
            if self.idx_in_frag
                < frag
                    .physical_rows
                    .expect("Fragment doesn't have physical rows recorded")
            {
                let next_id =
                    RowAddress::new_from_parts(frag.id as u32, self.idx_in_frag as u32).into();
                self.idx_in_frag += 1;
                return Some(next_id);
            }
            self.frag_idx += 1;
            self.idx_in_frag = 0;
        }
        None
    }
}

impl MaterializeIndexExec {
    pub fn new(
        dataset: Arc<Dataset>,
        expr: ScalarIndexExpr,
        fragments: Arc<Vec<Fragment>>,
    ) -> Self {
        Self {
            dataset,
            expr,
            fragments,
        }
    }

    #[instrument(name = "materialize_scalar_index", skip_all, level = "debug")]
    async fn do_execute(
        expr: ScalarIndexExpr,
        dataset: Arc<Dataset>,
        fragments: Arc<Vec<Fragment>>,
    ) -> Result<RecordBatch> {
        // TODO: multiple batches, stream without materializing all row ids in memory
        let mask = expr.evaluate(dataset.as_ref());
        let span = debug_span!("create_prefilter");
        let prefilter = span.in_scope(|| {
            let fragment_bitmap =
                RoaringBitmap::from_iter(fragments.iter().map(|frag| frag.id as u32));
            // The user-requested `fragments` is guaranteed to be stricter than the index's fragment
            // bitmap.  This node only runs on indexed fragments and any fragments that were deleted
            // when the index was trained will still be deleted when the index is queried.
            PreFilter::create_deletion_mask(dataset.clone(), fragment_bitmap)
        });
        let mask = if let Some(prefilter) = prefilter {
            let (mask, prefilter) = futures::try_join!(mask, prefilter)?;
            mask.also_block((*prefilter).clone())
        } else {
            mask.await?
        };
        let span = debug_span!("make_ids");
        let ids = span.in_scope(|| match (mask.allow_list, mask.block_list) {
            (None, None) => FragIdIter::new(fragments).collect::<Vec<_>>(),
            (Some(mut allow_list), None) => {
                allow_list.remove_fragments(fragments.iter().map(|frag| frag.id as u32));
                if let Some(allow_list_iter) = allow_list.row_ids() {
                    allow_list_iter.map(u64::from).collect::<Vec<_>>()
                } else {
                    FragIdIter::new(fragments)
                        .filter(|row_id| allow_list.contains(*row_id))
                        .collect()
                }
            }
            (None, Some(block_list)) => FragIdIter::new(fragments)
                .filter(|row_id| !block_list.contains(*row_id))
                .collect(),
            (Some(mut allow_list), Some(block_list)) => {
                allow_list.remove_fragments(fragments.iter().map(|frag| frag.id as u32));
                if let Some(allow_list_iter) = allow_list.row_ids() {
                    allow_list_iter
                        .filter_map(|addr| {
                            let row_id = u64::from(addr);
                            if !block_list.contains(row_id) {
                                Some(row_id)
                            } else {
                                None
                            }
                        })
                        .collect::<Vec<_>>()
                } else {
                    FragIdIter::new(fragments)
                        .filter(|row_id| {
                            !block_list.contains(*row_id) && allow_list.contains(*row_id)
                        })
                        .collect()
                }
            }
        });
        let ids = UInt64Array::from(ids);
        Ok(RecordBatch::try_new(
            MATERIALIZE_INDEX_SCHEMA.clone(),
            vec![Arc::new(ids)],
        )?)
    }
}

impl ExecutionPlan for MaterializeIndexExec {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn schema(&self) -> SchemaRef {
        MATERIALIZE_INDEX_SCHEMA.clone()
    }

    fn output_partitioning(&self) -> datafusion::physical_plan::Partitioning {
        Partitioning::RoundRobinBatch(1)
    }

    fn output_ordering(&self) -> Option<&[datafusion::physical_expr::PhysicalSortExpr]> {
        // No guarantee a scalar index scan will return row ids in any meaningful order
        None
    }

    fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
        vec![]
    }

    fn with_new_children(
        self: Arc<Self>,
        _children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> datafusion::error::Result<Arc<dyn ExecutionPlan>> {
        todo!()
    }

    fn execute(
        &self,
        _partition: usize,
        _context: Arc<datafusion::execution::context::TaskContext>,
    ) -> datafusion::error::Result<datafusion::physical_plan::SendableRecordBatchStream> {
        let batch_fut = Self::do_execute(
            self.expr.clone(),
            self.dataset.clone(),
            self.fragments.clone(),
        );
        let stream = futures::stream::iter(vec![batch_fut])
            .then(|batch_fut| batch_fut.map_err(|err| err.into()))
            .boxed()
            as BoxStream<'static, datafusion::common::Result<RecordBatch>>;
        Ok(Box::pin(StreamWithSchema {
            schema: MATERIALIZE_INDEX_SCHEMA.clone(),
            stream,
        }))
    }

    fn statistics(&self) -> datafusion::error::Result<datafusion::physical_plan::Statistics> {
        todo!()
    }
}