use std::sync::Arc;
use arrow_array::{
cast::AsArray, make_array, Array, ArrayRef, FixedSizeListArray, RecordBatch, StructArray,
};
use arrow_ord::sort::sort_to_indices;
use arrow_schema::{DataType, Field as ArrowField, SchemaRef, SortOptions};
use arrow_select::{concat::concat, take::take};
use futures::{
future,
stream::{repeat_with, StreamExt, TryStreamExt},
};
use lance_arrow::*;
use lance_core::{Error, Result, ROW_ID};
use lance_io::stream::RecordBatchStream;
use lance_linalg::distance::DistanceType;
use snafu::{location, Location};
use tracing::instrument;
use super::{Query, DIST_COL};
fn distance_field() -> ArrowField {
ArrowField::new(DIST_COL, DataType::Float32, true)
}
#[instrument(level = "debug", skip_all)]
pub async fn flat_search(
stream: impl RecordBatchStream + 'static,
query: &Query,
) -> Result<RecordBatch> {
let input_schema = stream.schema();
let batches = stream
.try_filter(|batch| future::ready(batch.num_rows() > 0))
.zip(repeat_with(|| query.metric_type))
.map(|(batch, mt)| async move { flat_search_batch(query, mt, batch?).await })
.buffer_unordered(16)
.try_collect::<Vec<_>>()
.await?;
if batches.is_empty() {
if input_schema.column_with_name(DIST_COL).is_none() {
let schema_with_distance = input_schema.try_with_column(distance_field())?;
return Ok(RecordBatch::new_empty(schema_with_distance.into()));
} else {
return Ok(RecordBatch::new_empty(input_schema));
}
}
let batch = concat_batches(&batches[0].schema(), &batches)?;
let distances = batch.column_by_name(DIST_COL).unwrap();
let indices = sort_to_indices(distances, None, Some(query.k))?;
let struct_arr = StructArray::from(batch);
let selected_arr = take(&struct_arr, &indices, None)?;
Ok(selected_arr.as_struct().into())
}
#[instrument(level = "debug", skip(query, batch))]
async fn flat_search_batch(
query: &Query,
mt: DistanceType,
mut batch: RecordBatch,
) -> Result<RecordBatch> {
let key = query.key.clone();
let k = query.k;
if batch.column_by_name(DIST_COL).is_some() {
batch = batch.drop_column(DIST_COL)?;
}
let vectors = batch
.column_by_name(&query.column)
.ok_or_else(|| Error::Schema {
message: format!("column {} does not exist in dataset", query.column),
location: location!(),
})?;
let vectors = as_fixed_size_list_array(vectors.as_ref()).clone();
let validity_buffer = if let Some(rowids) = batch.column_by_name(ROW_ID) {
rowids.nulls().map(|nulls| nulls.buffer().clone())
} else {
None
};
let vectors = vectors
.into_data()
.into_builder()
.null_bit_buffer(validity_buffer)
.build()
.map(make_array)?;
let vectors = as_fixed_size_list_array(vectors.as_ref()).clone();
tokio::task::spawn_blocking(move || {
let distances = mt.arrow_batch_func()(key.as_ref(), &vectors)? as ArrayRef;
let k = std::cmp::min(k, distances.len() - distances.null_count());
let sort_options = SortOptions {
nulls_first: false,
..Default::default()
};
let indices = sort_to_indices(&distances, Some(sort_options), Some(k))?;
let batch_with_distance = batch.try_with_column(distance_field(), distances)?;
let struct_arr = StructArray::from(batch_with_distance);
let selected_arr = take(&struct_arr, &indices, None)?;
Ok::<RecordBatch, Error>(selected_arr.as_struct().into())
})
.await
.unwrap()
}
fn concat_batches<'a>(
schema: &SchemaRef,
input_batches: impl IntoIterator<Item = &'a RecordBatch>,
) -> Result<RecordBatch> {
let batches: Vec<&RecordBatch> = input_batches.into_iter().collect();
if batches.is_empty() {
return Ok(RecordBatch::new_empty(schema.clone()));
}
let field_num = schema.fields().len();
let mut arrays = Vec::with_capacity(field_num);
for i in 0..field_num {
let in_arrays = &batches
.iter()
.map(|batch| batch.column(i).as_ref())
.collect::<Vec<_>>();
let data_type = in_arrays[0].data_type();
let array = match data_type {
DataType::FixedSizeList(f, size) if f.data_type().is_floating() => {
concat_fsl(in_arrays, *size)?
}
_ => concat(in_arrays)?,
};
arrays.push(array);
}
Ok(RecordBatch::try_new(schema.clone(), arrays)?)
}
fn concat_fsl(arrays: &[&dyn Array], size: i32) -> Result<ArrayRef> {
let values_arrays: Vec<_> = arrays
.iter()
.map(|&arr| as_fixed_size_list_array(arr).values().as_ref())
.collect();
let values = concat(&values_arrays)?;
Ok(Arc::new(FixedSizeListArray::try_new_from_values(
values, size,
)?))
}