1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use arrow_array::types::UInt32Type;
use arrow_array::{cast::AsArray, Array, FixedSizeListArray, RecordBatch};
use arrow_schema::Field;
use async_trait::async_trait;
use lance_arrow::{ArrowFloatType, FixedSizeListArrayExt, FloatArray, RecordBatchExt};
use lance_core::{Error, Result};
use lance_linalg::MatrixView;
use snafu::{location, Location};
use std::sync::Arc;

use super::transform::Transformer;

pub const RESIDUAL_COLUMN: &str = "__residual_vector";

/// Compute the residual vector of a Vector Matrix to their centroids.
///
/// The residual vector is the difference between the original vector and the centroid.
///
#[derive(Clone)]
pub struct ResidualTransform<T: ArrowFloatType> {
    centroids: MatrixView<T>,

    /// Partition Column
    part_col: String,

    /// Vector Column
    vec_col: String,
}

impl<T: ArrowFloatType> std::fmt::Debug for ResidualTransform<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "ResidualTransform")
    }
}

impl<T: ArrowFloatType> ResidualTransform<T> {
    pub fn new(centroids: MatrixView<T>, part_col: &str, column: &str) -> Self {
        Self {
            centroids,
            part_col: part_col.to_owned(),
            vec_col: column.to_owned(),
        }
    }
}

#[async_trait]
impl<T: ArrowFloatType> Transformer for ResidualTransform<T> {
    /// Replace the original vector in the [`RecordBatch`] to residual vectors.
    ///
    /// The new [`RecordBatch`] will have a new column named [`RESIDUAL_COLUMN`].
    async fn transform(&self, batch: &RecordBatch) -> Result<RecordBatch> {
        let part_ids = batch.column_by_name(&self.part_col).ok_or(Error::Index {
            message: format!(
                "Compute residual vector: partition id column not found: {}",
                self.part_col
            ),
            location: location!(),
        })?;
        let original = batch.column_by_name(&self.vec_col).ok_or(Error::Index {
            message: format!(
                "Compute residual vector: original vector column not found: {}",
                self.vec_col
            ),
            location: location!(),
        })?;
        let original_vectors = original.as_fixed_size_list_opt().ok_or(Error::Index {
            message: format!(
                "Compute residual vector: original vector column {} is not fixed size list: {}",
                self.vec_col,
                original.data_type(),
            ),
            location: location!(),
        })?;

        // BFloat16Array is not supported via `as_primitive()` cast yet, so we have to do
        // `downcast_ref()` for now.
        let flatten_data = original_vectors
            .values()
            .as_any()
            .downcast_ref::<T::ArrayType>()
            .ok_or(Error::Index {
                message: format!(
                    "Compute residual vector: original vector column {} is not expected type: expect: {}, got {}",
                    self.vec_col,
                    T::FLOAT_TYPE,
                    original_vectors.value_type(),
                ),
                location: location!(),
            })?;
        let dim = original_vectors.value_length();
        let mut residual_arr: Vec<T::Native> = Vec::with_capacity(flatten_data.len());
        flatten_data
            .as_slice()
            .chunks_exact(dim as usize)
            .zip(part_ids.as_primitive::<UInt32Type>().values().iter())
            .for_each(|(vector, &part_id)| {
                let centroid = self.centroids.row(part_id as usize).unwrap();
                // TODO: SIMD
                residual_arr.extend(
                    vector
                        .iter()
                        .zip(centroid.iter())
                        .map(|(v, cent)| *v - *cent),
                );
            });
        let residual_arr =
            FixedSizeListArray::try_new_from_values(T::ArrayType::from(residual_arr), dim)?;

        // Replace original column with residual column.
        let batch = batch.drop_column(&self.vec_col)?;

        let residual_field = Field::new(RESIDUAL_COLUMN, residual_arr.data_type().clone(), false);

        let batch = batch.try_with_column(residual_field, Arc::new(residual_arr))?;
        Ok(batch)
    }
}