lance_encoding/
repdef.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

//! Utilities for rep-def levels
//!
//! Repetition and definition levels are a way to encode multipile validity / offsets arrays
//! into a single buffer.  They are a form of "zipping" buffers together that takes advantage
//! of the fact that, if the outermost array is invalid, then the validity of the inner items
//! is irrelevant.
//!
//! Note: the concept of repetition & definition levels comes from the Dremel paper and has
//! been implemented in Apache Parquet.  However, the implementation here is not neccesarily
//! compatible with Parquet.  For example, we use 0 to represent the "inner-most" item and
//! Parquet uses 0 to represent the "outer-most" item.
//!
//! # Repetition Levels
//!
//! With repetition levels we convert a sparse array of offsets into a dense array of levels.
//! These levels are marked non-zero whenever a new list begins.  In other words, given the
//! list array with 3 rows [{<0,1>, <>, <2>}, {<3>}, {}], [], [{<4>}] we would have three
//! offsets arrays:
//!
//! Outer-most ([]): [0, 3, 3, 4]
//! Middle     ({}): [0, 3, 4, 4, 5]
//! Inner      (<>): [0, 2, 2, 3, 4, 5]
//! Values         : [0, 1, 2, 3, 4]
//!
//! We can convert these into repetition levels as follows:
//!
//! | Values | Repetition |
//! | ------ | ---------- |
//! |      0 |          3 | // Start of outer-most list
//! |      1 |          0 | // Continues inner-most list (no new lists)
//! |      - |          1 | // Start of new inner-most list (empty list)
//! |      2 |          1 | // Start of new inner-most list
//! |      3 |          2 | // Start of new middle list
//! |      - |          2 | // Start of new inner-most list (empty list)
//! |      - |          3 | // Start of new outer-most list (empty list)
//! |      4 |          0 | // Start of new outer-most list
//!
//! Note: We actually have MORE repetition levels than values.  This is because the repetition
//! levels need to be able to represent empty lists.
//!
//! # Definition Levels
//!
//! Definition levels are simpler.  We can think of them as zipping together various validity (from
//! different levels of nesting) into a single buffer.  For example, we could zip the arrays
//! [1, 1, 0, 0] and [1, 0, 1, 0] into [11, 10, 01, 00].  However, 00 and 01 are redundant.  If the
//! outer level is null then the validity of the inner levels is irrelevant.  To save space we instead
//! encode a "level" which is the "depth" of the null.  Let's look at a more complete example:
//!
//! Array: [{"middle": {"inner": 1]}}, NULL, {"middle": NULL}, {"middle": {"inner": NULL}}]
//!
//! In Arrow we would have the following validity arrays:
//! Outer validity : 1, 0, 1, 1
//! Middle validity: 1, ?, 0, 1
//! Inner validity : 1, ?, ?, 0
//! Values         : 1, ?, ?, ?
//!
//! The ? values are undefined in the Arrow format.  We can convert these into definition levels as follows:
//!
//! | Values | Definition |
//! | ------ | ---------- |
//! |      1 |          0 | // Valid at all levels
//! |      - |          3 | // Null at outer level
//! |      - |          2 | // Null at middle level
//! |      - |          1 | // Null at inner level
//!
//! # Compression
//!
//! Note that we only need 2 bits of definition levels to represent 3 levels of nesting.  Definition
//! levels are always more compact than the input validity arrays.
//!
//! Repetition levels are more complex.  If there are very large lists then a sparse array of offsets
//! (which has one element per list) might be more compact than a dense array of repetition levels
//! (which has one element per list value, possibly even more if there are empty lists).
//!
//! However, both repetition levels and definition levels are typically very compressible with RLE.
//!
//! However, in Lance we don't always take advantage of that compression because we want to be able
//! to zip rep-def levels together with our values.  This gives us fewer IOPS when accessing row values.

// TODO: Right now, if a layer has no nulls, but other layers do, then we still use
//       up a repetition layer for the no-null spot.  For example, if we have four
//       levels of rep: [has nulls, has nulls, no nulls, has nulls] then we will say:
//       0 = valid
//       1 = layer 4 null
//       2 = layer 3 null
//       3 = layer 2 null (useless)
//       4 = layer 1 null
//
// This means we end up with 3 bits per level instead of 2.  We could instead record
// the layers that are all null somewhere else and not require wider rep levels.

use std::sync::Arc;

use arrow_array::OffsetSizeTrait;
use arrow_buffer::{
    ArrowNativeType, BooleanBuffer, BooleanBufferBuilder, NullBuffer, OffsetBuffer, ScalarBuffer,
};
use lance_core::{Error, Result};
use snafu::{location, Location};

// We assume 16 bits is good enough for rep-def levels.  This gives us
// 65536 levels of struct nesting and list nesting.
pub type LevelBuffer = Vec<u16>;

// As we build up rep/def from arrow arrays we record a
// series of RawRepDef objects
#[derive(Clone, Debug)]
enum RawRepDef {
    Offsets(Arc<[i64]>),
    Validity(BooleanBuffer),
    NoNull(usize),
}

/// Represents repetition and definition levels that have been
/// serialized into a pair of (optional) level buffers
#[derive(Debug)]
pub struct SerializedRepDefs {
    // If None, there are no lists
    pub repetition_levels: Option<LevelBuffer>,
    // If None, there are no nulls
    pub definition_levels: Option<LevelBuffer>,
}

impl SerializedRepDefs {
    /// Creates an empty SerializedRepDefs (no repetition, all valid)
    pub fn empty() -> Self {
        Self {
            repetition_levels: None,
            definition_levels: None,
        }
    }
}

/// The RepDefBuilder is used to collect offsets & validity buffers
/// from arrow structures.  Once we have those we use the SerializerContext
/// to build the actual repetition and definition levels by walking through
/// the arrow constructs in reverse order.
///
/// The algorithm for definition levels is pretty simple
///
/// Given:
///  - a validity buffer of [T, F, F, T, T]
///  - a current def level of 5
///  - a current definitions of [0, 1, 3, 3, 0]
///
/// We walk through the definitions and replace them with
///   the current level whenever a value is invalid.  Thus
///   our output is: [0, 5, 5, 3, 0]
///
/// The algorithm for repetition levels is more complex.
///
/// The first time we see an offsets buffer we initialize the
/// rep levels to have a value of 1 whenever a list starts and 0
/// otherwise.
///
/// So, given offsets of [0, 3, 5] and no repetition we create
/// rep levels [1 0 0 1 0]
///
/// However, we also record the offsets into our current rep and
/// def levels and all operations happen in context of those offsets.
///
/// For example, continuing the above scenario we might then see validity
/// of [T, F].  This is strange since our validity bitmap has 2 items but
/// we would have 5 definition levels.  We can use our current offsets
/// ([0, 3, 5]) to expand [T, F] into [T, T, T, F, F].
struct SerializerContext {
    last_offsets: Option<Arc<[i64]>>,
    rep_levels: LevelBuffer,
    def_levels: LevelBuffer,
    current_rep: u16,
    current_def: u16,
    has_nulls: bool,
}

impl SerializerContext {
    fn new(len: usize, has_nulls: bool) -> Self {
        Self {
            last_offsets: None,
            rep_levels: LevelBuffer::with_capacity(len),
            def_levels: if has_nulls {
                LevelBuffer::with_capacity(len)
            } else {
                LevelBuffer::default()
            },
            current_rep: 1,
            current_def: 1,
            has_nulls: false,
        }
    }

    fn record_all_valid(&mut self, len: usize) {
        self.current_def += 1;
        if self.def_levels.is_empty() {
            self.def_levels.resize(len, 0);
        }
    }

    fn record_offsets(&mut self, offsets: &Arc<[i64]>) {
        let rep_level = self.current_rep;
        self.current_rep += 1;
        if let Some(last_offsets) = &self.last_offsets {
            let mut new_last_off = Vec::with_capacity(offsets.len());
            for off in offsets[..offsets.len() - 1].iter() {
                let offset_ctx = last_offsets[*off as usize];
                new_last_off.push(offset_ctx);
                self.rep_levels[offset_ctx as usize] = rep_level;
            }
            self.last_offsets = Some(new_last_off.into());
        } else {
            self.rep_levels.resize(*offsets.last().unwrap() as usize, 0);
            for off in offsets[..offsets.len() - 1].iter() {
                self.rep_levels[*off as usize] = rep_level;
            }
            self.last_offsets = Some(offsets.clone());
        }
    }

    fn record_validity(&mut self, validity: &BooleanBuffer) {
        self.has_nulls = true;
        let def_level = self.current_def;
        self.current_def += 1;
        if self.def_levels.is_empty() {
            self.def_levels.resize(validity.len(), 0);
        }
        if let Some(last_offsets) = &self.last_offsets {
            last_offsets
                .windows(2)
                .zip(validity.iter())
                .for_each(|(w, valid)| {
                    if !valid {
                        self.def_levels[w[0] as usize..w[1] as usize].fill(def_level);
                    }
                });
        } else {
            self.def_levels
                .iter_mut()
                .zip(validity.iter())
                .for_each(|(def, valid)| {
                    if !valid {
                        *def = def_level;
                    }
                });
        }
    }

    fn build(self) -> SerializedRepDefs {
        SerializedRepDefs {
            definition_levels: if self.has_nulls {
                Some(self.def_levels)
            } else {
                None
            },
            repetition_levels: if self.current_rep > 1 {
                Some(self.rep_levels)
            } else {
                None
            },
        }
    }
}

/// A structure used to collect validity buffers and offsets from arrow
/// arrays and eventually create repetition and definition levels
///
/// As we are encoding the structural encoders are given this struct and
/// will record the arrow information into it.  Once we hit a leaf node we
/// serialize the data into rep/def levels and write these into the page.
#[derive(Clone, Default)]
pub struct RepDefBuilder {
    // The rep/def info we have collected so far
    repdefs: Vec<RawRepDef>,
    // The current length, can get larger as we traverse lists (e.g. an
    // array might have 5 lists which results in 50 items)
    //
    // Starts uninitialized until we see the first rep/def item
    len: Option<usize>,
}

impl RepDefBuilder {
    fn check_validity_len(&mut self, validity: &NullBuffer) {
        if let Some(len) = self.len {
            assert!(validity.len() == len);
        }
        self.len = Some(validity.len());
    }

    fn num_layers(&self) -> usize {
        self.repdefs.len()
    }

    fn is_empty(&self) -> bool {
        self.repdefs
            .iter()
            .all(|r| matches!(r, RawRepDef::NoNull(_)))
    }

    /// Return True if any layer has a validity bitmap
    ///
    /// Return False if all layers are non-null (the def levels can
    /// be skipped in this case)
    pub fn has_nulls(&self) -> bool {
        self.repdefs
            .iter()
            .any(|rd| matches!(rd, RawRepDef::Validity(_)))
    }

    /// Registers a nullable validity bitmap
    pub fn add_validity_bitmap(&mut self, validity: NullBuffer) {
        self.check_validity_len(&validity);
        self.repdefs
            .push(RawRepDef::Validity(validity.into_inner()));
    }

    /// Registers an all-valid validity layer
    pub fn add_no_null(&mut self, len: usize) {
        self.repdefs.push(RawRepDef::NoNull(len));
    }

    fn check_offset_len(&mut self, offsets: &[i64]) {
        if let Some(len) = self.len {
            assert!(offsets.len() == len + 1);
        }
        self.len = Some(offsets[offsets.len() - 1] as usize);
    }

    /// Adds a layer of offsets
    ///
    /// Note: a List/LargeList/etc. array has both offsets and validity.  The
    /// caller should register the validity before registering the offsets
    pub fn add_offsets<O: OffsetSizeTrait>(&mut self, repetition: OffsetBuffer<O>) {
        // We should be able to zero-copy
        if O::IS_LARGE {
            let inner = repetition.into_inner();
            let len = inner.len();
            let i64_buff = ScalarBuffer::new(inner.into_inner(), 0, len);
            let offsets = Vec::from(i64_buff);
            self.check_offset_len(&offsets);
            self.repdefs.push(RawRepDef::Offsets(offsets.into()));
        } else {
            let inner = repetition.into_inner();
            let len = inner.len();
            let casted = ScalarBuffer::<i32>::new(inner.into_inner(), 0, len)
                .iter()
                .copied()
                .map(|o| o as i64)
                .collect::<Vec<_>>();
            self.check_offset_len(&casted);
            self.repdefs.push(RawRepDef::Offsets(casted.into()));
        }
    }

    // TODO: This is lazy.  We shouldn't need this concatenation pass.  We should be able
    // to concatenate as we build up the rep/def levels but I'm saving that for a
    // future optimization.
    fn concat_layers<'a>(mut layers: impl Iterator<Item = &'a RawRepDef>, len: usize) -> RawRepDef {
        let first = layers.next().unwrap();
        match &first {
            RawRepDef::NoNull(_) | RawRepDef::Validity(_) => {
                // Also lazy, building up a validity buffer just to throw it away
                // if there are no nulls
                let mut has_nulls = false;
                let mut builder = BooleanBufferBuilder::new(len);
                for layer in std::iter::once(first).chain(layers) {
                    match layer {
                        RawRepDef::NoNull(num_valid) => {
                            builder.append_n(*num_valid, true);
                        }
                        RawRepDef::Validity(validity) => {
                            has_nulls = true;
                            builder.append_buffer(validity);
                        }
                        _ => unreachable!(),
                    }
                }
                if has_nulls {
                    RawRepDef::Validity(builder.finish())
                } else {
                    RawRepDef::NoNull(builder.len())
                }
            }
            RawRepDef::Offsets(offsets) => {
                let mut all_offsets = Vec::with_capacity(len);
                all_offsets.extend(offsets.iter().copied());
                for layer in layers {
                    let last = *all_offsets.last().unwrap();
                    let RawRepDef::Offsets(offsets) = layer else {
                        unreachable!()
                    };
                    all_offsets.extend(offsets.iter().skip(1).map(|off| *off + last));
                }
                RawRepDef::Offsets(all_offsets.into())
            }
        }
    }

    /// Converts the validity / offsets buffers that have been gathered so far
    /// into repetition and definition levels
    pub fn serialize(builders: Vec<Self>) -> SerializedRepDefs {
        if builders.is_empty() {
            return SerializedRepDefs::empty();
        }
        if builders.iter().all(|b| b.is_empty()) {
            // No repetition, all-valid
            return SerializedRepDefs::empty();
        }
        let has_nulls = builders.iter().any(|b| b.has_nulls());
        let total_len = builders.iter().map(|b| b.len.unwrap()).sum();
        let mut context = SerializerContext::new(total_len, has_nulls);
        debug_assert!(builders
            .iter()
            .all(|b| b.num_layers() == builders[0].num_layers()));
        for layer_index in (0..builders[0].num_layers()).rev() {
            let layer =
                Self::concat_layers(builders.iter().map(|b| &b.repdefs[layer_index]), total_len);
            match layer {
                RawRepDef::Validity(def) => {
                    context.record_validity(&def);
                }
                RawRepDef::Offsets(rep) => {
                    context.record_offsets(&rep);
                }
                RawRepDef::NoNull(len) => {
                    context.record_all_valid(len);
                }
            }
        }
        context.build()
    }
}

/// Starts with serialized repetition and definition levels and unravels
/// them into validity buffers and offsets buffers
///
/// This is used during decoding to create the neccesary arrow structures
#[derive(Debug)]
pub struct RepDefUnraveler {
    rep_levels: Option<LevelBuffer>,
    def_levels: Option<LevelBuffer>,
    // Current definition level to compare to.
    current_def_cmp: u16,
}

impl RepDefUnraveler {
    /// Creates a new unraveler from serialized repetition and definition information
    pub fn new(rep_levels: Option<LevelBuffer>, def_levels: Option<LevelBuffer>) -> Self {
        Self {
            rep_levels,
            def_levels,
            current_def_cmp: 0,
        }
    }

    /// Unravels a layer of offsets from the unraveler into the given offset width
    ///
    /// When decoding a list the caller should first unravel the offsets and then
    /// unravel the validity (this is the opposite order used during encoding)
    pub fn unravel_offsets<T: ArrowNativeType>(&mut self) -> Result<OffsetBuffer<T>> {
        let rep_levels = self
            .rep_levels
            .as_mut()
            .expect("Expected repetition level but data didn't contain repetition");
        let mut offsets: Vec<T> = Vec::with_capacity(rep_levels.len() + 1);
        let mut curlen: usize = 0;
        let to_offset = |val: usize| {
            T::from_usize(val)
            .ok_or_else(|| Error::invalid_input("A single batch had more than i32::MAX values and so a large container type is required", location!()))
        };
        if let Some(def_levels) = &mut self.def_levels {
            assert!(rep_levels.len() == def_levels.len());
            // This is a strange access pattern.  We are iterating over the rep/def levels and
            // at the same time writing the rep/def levels.  This means we need both a mutable
            // and immutable reference to the rep/def levels.
            let mut read_idx = 0;
            let mut write_idx = 0;
            while read_idx < rep_levels.len() {
                // SAFETY: We assert that rep_levels and def_levels have the same
                // len and read_idx and write_idx can never go past the end.
                unsafe {
                    let rep_val = *rep_levels.get_unchecked(read_idx);
                    if rep_val != 0 {
                        // Finish the current list
                        offsets.push(to_offset(curlen)?);
                        *rep_levels.get_unchecked_mut(write_idx) = rep_val - 1;
                        *def_levels.get_unchecked_mut(write_idx) =
                            *def_levels.get_unchecked(read_idx);
                        write_idx += 1;
                    }
                    curlen += 1;
                    read_idx += 1;
                }
            }
            offsets.push(to_offset(curlen)?);
            rep_levels.truncate(offsets.len() - 1);
            def_levels.truncate(offsets.len() - 1);
            Ok(OffsetBuffer::new(ScalarBuffer::from(offsets)))
        } else {
            // SAFETY: See above loop
            let mut read_idx = 0;
            let mut write_idx = 0;
            while read_idx < rep_levels.len() {
                // SAFETY: read_idx / write_idx cannot go past rep_levels.len()
                unsafe {
                    let rep_val = *rep_levels.get_unchecked(read_idx);
                    if rep_val != 0 {
                        // Finish the current list
                        offsets.push(to_offset(curlen)?);
                        *rep_levels.get_unchecked_mut(write_idx) = rep_val - 1;
                        write_idx += 1;
                    }
                    curlen += 1;
                    read_idx += 1;
                }
            }
            offsets.push(to_offset(curlen)?);
            rep_levels.truncate(offsets.len() - 1);
            Ok(OffsetBuffer::new(ScalarBuffer::from(offsets)))
        }
    }

    /// Unravels a layer of validity from the definition levels
    pub fn unravel_validity(&mut self) -> Option<NullBuffer> {
        let Some(def_levels) = &self.def_levels else {
            return None;
        };
        let current_def_cmp = self.current_def_cmp;
        self.current_def_cmp += 1;
        let validity = BooleanBuffer::from_iter(def_levels.iter().map(|&r| r <= current_def_cmp));
        if validity.count_set_bits() == validity.len() {
            None
        } else {
            Some(NullBuffer::new(validity))
        }
    }
}

#[cfg(test)]
mod tests {
    use arrow_buffer::{NullBuffer, OffsetBuffer, ScalarBuffer};

    use crate::repdef::RepDefUnraveler;

    use super::RepDefBuilder;

    fn validity(values: &[bool]) -> NullBuffer {
        NullBuffer::from_iter(values.iter().copied())
    }

    fn offsets_32(values: &[i32]) -> OffsetBuffer<i32> {
        OffsetBuffer::<i32>::new(ScalarBuffer::from_iter(values.iter().copied()))
    }

    fn offsets_64(values: &[i64]) -> OffsetBuffer<i64> {
        OffsetBuffer::<i64>::new(ScalarBuffer::from_iter(values.iter().copied()))
    }

    #[test]
    fn test_repdef() {
        // Basic case, rep & def
        let mut builder = RepDefBuilder::default();
        builder.add_validity_bitmap(validity(&[true, false, true]));
        builder.add_offsets(offsets_64(&[0, 2, 3, 5]));
        builder.add_validity_bitmap(validity(&[true, true, true, false, true]));
        builder.add_offsets(offsets_64(&[0, 1, 3, 5, 7, 9]));
        builder.add_validity_bitmap(validity(&[
            true, true, true, false, false, false, true, true, false,
        ]));

        let repdefs = RepDefBuilder::serialize(vec![builder]);
        let rep = repdefs.repetition_levels.unwrap();
        let def = repdefs.definition_levels.unwrap();

        assert_eq!(vec![0, 0, 0, 3, 3, 2, 2, 0, 1], def);
        assert_eq!(vec![2, 1, 0, 2, 0, 2, 0, 1, 0], rep);

        let mut unraveler = RepDefUnraveler::new(Some(rep), Some(def));

        // Note: validity doesn't exactly round-trip because repdef normalizes some of the
        // redundant validity values
        assert_eq!(
            unraveler.unravel_validity(),
            Some(validity(&[
                true, true, true, false, false, false, false, true, false
            ]))
        );
        assert_eq!(
            unraveler.unravel_offsets::<i32>().unwrap().inner(),
            offsets_32(&[0, 1, 3, 5, 7, 9]).inner()
        );
        assert_eq!(
            unraveler.unravel_validity(),
            Some(validity(&[true, true, false, false, true]))
        );
        assert_eq!(
            unraveler.unravel_offsets::<i32>().unwrap().inner(),
            offsets_32(&[0, 2, 3, 5]).inner()
        );
        assert_eq!(
            unraveler.unravel_validity(),
            Some(validity(&[true, false, true]))
        );
    }

    #[test]
    fn test_repdef_all_valid() {
        let mut builder = RepDefBuilder::default();
        builder.add_no_null(3);
        builder.add_offsets(offsets_64(&[0, 2, 3, 5]));
        builder.add_no_null(5);
        builder.add_offsets(offsets_64(&[0, 1, 3, 5, 7, 9]));
        builder.add_no_null(9);

        let repdefs = RepDefBuilder::serialize(vec![builder]);
        let rep = repdefs.repetition_levels.unwrap();
        assert!(repdefs.definition_levels.is_none());

        assert_eq!(vec![2, 1, 0, 2, 0, 2, 0, 1, 0], rep);

        let mut unraveler = RepDefUnraveler::new(Some(rep), None);

        assert_eq!(unraveler.unravel_validity(), None);
        assert_eq!(
            unraveler.unravel_offsets::<i32>().unwrap().inner(),
            offsets_32(&[0, 1, 3, 5, 7, 9]).inner()
        );
        assert_eq!(unraveler.unravel_validity(), None);
        assert_eq!(
            unraveler.unravel_offsets::<i32>().unwrap().inner(),
            offsets_32(&[0, 2, 3, 5]).inner()
        );
        assert_eq!(unraveler.unravel_validity(), None);
    }

    #[test]
    fn test_repdef_no_rep() {
        let mut builder = RepDefBuilder::default();
        builder.add_no_null(3);
        builder.add_validity_bitmap(validity(&[false, false, true, true, true]));
        builder.add_validity_bitmap(validity(&[false, true, true, true, false]));

        let repdefs = RepDefBuilder::serialize(vec![builder]);
        assert!(repdefs.repetition_levels.is_none());
        let def = repdefs.definition_levels.unwrap();

        assert_eq!(vec![2, 2, 0, 0, 1], def);

        let mut unraveler = RepDefUnraveler::new(None, Some(def));

        assert_eq!(
            unraveler.unravel_validity(),
            Some(validity(&[false, false, true, true, false]))
        );
        assert_eq!(
            unraveler.unravel_validity(),
            Some(validity(&[false, false, true, true, true]))
        );
        assert_eq!(unraveler.unravel_validity(), None);
    }

    #[test]
    fn test_repdef_multiple_builders() {
        // Basic case, rep & def
        let mut builder1 = RepDefBuilder::default();
        builder1.add_validity_bitmap(validity(&[true]));
        builder1.add_offsets(offsets_64(&[0, 2]));
        builder1.add_validity_bitmap(validity(&[true, true]));
        builder1.add_offsets(offsets_64(&[0, 1, 3]));
        builder1.add_validity_bitmap(validity(&[true, true, true]));

        let mut builder2 = RepDefBuilder::default();
        builder2.add_validity_bitmap(validity(&[false, true]));
        builder2.add_offsets(offsets_64(&[0, 1, 3]));
        builder2.add_validity_bitmap(validity(&[true, false, true]));
        builder2.add_offsets(offsets_64(&[0, 2, 4, 6]));
        builder2.add_validity_bitmap(validity(&[false, false, false, true, true, false]));

        let repdefs = RepDefBuilder::serialize(vec![builder1, builder2]);
        let rep = repdefs.repetition_levels.unwrap();
        let def = repdefs.definition_levels.unwrap();

        assert_eq!(vec![2, 1, 0, 2, 0, 2, 0, 1, 0], rep);
        assert_eq!(vec![0, 0, 0, 3, 3, 2, 2, 0, 1], def);
    }
}