1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

use std::sync::Arc;

use arrow_array::{Array, ArrayRef, StructArray};
use futures::{future::BoxFuture, FutureExt};
use lance_arrow::DataTypeExt;

use crate::{
    buffer::LanceBuffer,
    data::{DataBlock, FixedWidthDataBlock, StructDataBlock},
    decoder::{PageScheduler, PrimitivePageDecoder},
    encoder::{ArrayEncoder, EncodedArray, EncodedArrayBuffer},
    format::pb::{self},
    EncodingsIo,
};

use arrow_buffer::buffer::Buffer;
use arrow_schema::{DataType, Fields};
use bytes::Bytes;
use bytes::BytesMut;
use lance_core::Result;

#[derive(Debug)]
pub struct PackedStructPageScheduler {
    // We don't actually need these schedulers right now since we decode all the field bytes directly
    // But they can be useful if we actually need to use the decoders for the inner fields later
    // e.g. once bitpacking is added
    _inner_schedulers: Vec<Box<dyn PageScheduler>>,
    fields: Fields,
    buffer_offset: u64,
}

impl PackedStructPageScheduler {
    pub fn new(
        _inner_schedulers: Vec<Box<dyn PageScheduler>>,
        struct_datatype: DataType,
        buffer_offset: u64,
    ) -> Self {
        let DataType::Struct(fields) = struct_datatype else {
            panic!("Struct datatype expected");
        };
        Self {
            _inner_schedulers,
            fields,
            buffer_offset,
        }
    }
}

impl PageScheduler for PackedStructPageScheduler {
    fn schedule_ranges(
        &self,
        ranges: &[std::ops::Range<u64>],
        scheduler: &Arc<dyn EncodingsIo>,
        top_level_row: u64,
    ) -> BoxFuture<'static, Result<Box<dyn PrimitivePageDecoder>>> {
        let mut total_bytes_per_row: u64 = 0;

        for field in &self.fields {
            let bytes_per_field = field.data_type().byte_width() as u64;
            total_bytes_per_row += bytes_per_field;
        }

        // Parts of the arrays in a page may be encoded in different encoding tasks
        // In that case decoding two different sets of rows can result in the same ranges parameter being passed in
        // e.g. we may get ranges[0..2] and ranges[0..2] to decode 4 rows through 2 tasks
        // So to get the correct byte ranges we need to know the position of the buffer in the page (i.e. the buffer offset)
        // This is computed directly from the buffer stored in the protobuf
        let byte_ranges = ranges
            .iter()
            .map(|range| {
                let start = self.buffer_offset + (range.start * total_bytes_per_row);
                let end = self.buffer_offset + (range.end * total_bytes_per_row);
                start..end
            })
            .collect::<Vec<_>>();

        // Directly creates a future to decode the bytes
        let bytes = scheduler.submit_request(byte_ranges, top_level_row);

        let copy_struct_fields = self.fields.clone();

        tokio::spawn(async move {
            let bytes = bytes.await?;

            let mut combined_bytes = BytesMut::default();
            for byte_slice in bytes {
                combined_bytes.extend_from_slice(&byte_slice);
            }

            Ok(Box::new(PackedStructPageDecoder {
                data: combined_bytes.freeze(),
                fields: copy_struct_fields,
                total_bytes_per_row: total_bytes_per_row as usize,
            }) as Box<dyn PrimitivePageDecoder>)
        })
        .map(|join_handle| join_handle.unwrap())
        .boxed()
    }
}

struct PackedStructPageDecoder {
    data: Bytes,
    fields: Fields,
    total_bytes_per_row: usize,
}

impl PrimitivePageDecoder for PackedStructPageDecoder {
    fn decode(&self, rows_to_skip: u64, num_rows: u64) -> Result<Box<dyn DataBlock>> {
        // Decoding workflow:
        // rows 0-2: {x: [1, 2, 3], y: [4, 5, 6], z: [7, 8, 9]}
        // rows 3-5: {x: [10, 11, 12], y: [13, 14, 15], z: [16, 17, 18]}
        // packed encoding: [
        // [1, 4, 7, 2, 5, 8, 3, 6, 9],
        // [10, 13, 16, 11, 14, 17, 12, 15, 18]
        // ]
        // suppose bytes_per_field=1, 4, 8 for fields x, y, and z, respectively.
        // Then total_bytes_per_row = 13
        // Suppose rows_to_skip=1 and num_rows=2. Then we will slice bytes 13 to 39.
        // Now we have [2, 5, 8, 3, 6, 9]
        // We rearrange this to get [BytesMut(2, 3), BytesMut(5, 6), BytesMut(8, 9)] as a Vec<BytesMut>
        // This is used to reconstruct the struct array later

        let bytes_to_skip = (rows_to_skip as usize) * self.total_bytes_per_row;

        let mut children = Vec::with_capacity(self.fields.len());

        let mut start_index = 0;

        for field in &self.fields {
            let bytes_per_field = field.data_type().byte_width();
            let mut field_bytes = Vec::with_capacity(bytes_per_field * num_rows as usize);

            let mut byte_index = start_index;

            for _ in 0..num_rows {
                let start = bytes_to_skip + byte_index;
                field_bytes.extend_from_slice(&self.data[start..(start + bytes_per_field)]);
                byte_index += self.total_bytes_per_row;
            }

            start_index += bytes_per_field;
            children.push(Box::new(FixedWidthDataBlock {
                data: LanceBuffer::from(field_bytes),
                bits_per_value: bytes_per_field as u64 * 8,
                num_values: num_rows,
            }) as Box<dyn DataBlock>);
        }
        Ok(Box::new(StructDataBlock { children }))
    }
}

#[derive(Debug)]
pub struct PackedStructEncoder {
    inner_encoders: Vec<Box<dyn ArrayEncoder>>,
}

impl PackedStructEncoder {
    pub fn new(inner_encoders: Vec<Box<dyn ArrayEncoder>>) -> Self {
        Self { inner_encoders }
    }
}

fn pack(encoded_fields: Vec<EncodedArray>, fields_bytes_per_value: Vec<usize>) -> Buffer {
    // Each EncodedArray can have several EncodedArrayBuffers (e.g. validity, offsets, bytes, etc)
    // Each EncodedArrayBuffer object has several parts. Each part is a Vec<Buffer>
    // The code below assumes that for all fields:
    // (i) Each EncodedArray has only one EncodedArrayBuffer
    encoded_fields
        .iter()
        .for_each(|field| debug_assert!(field.buffers.len() == 1));
    // (ii) The total number of buffers across all parts in the EncodedArrayBuffer is the same
    if encoded_fields.len() > 1 {
        debug_assert!(encoded_fields.windows(2).all(|window| {
            window[0].buffers[0].parts.len() == window[1].buffers[0].parts.len()
        }));
    }

    let total_bytes_per_row = fields_bytes_per_value.iter().sum::<usize>();
    // This workflow will have to change as we adapt the packed encoding to support more complex datatypes
    let num_total_bytes: usize = encoded_fields
        .iter()
        .map(|field| {
            field.buffers[0]
                .parts
                .iter()
                .map(|buf| buf.len())
                .sum::<usize>()
        })
        .sum();

    let mut packed_vec: Vec<u8> = vec![0; num_total_bytes];

    let mut field_offset = 0;
    for (field_index, encoded_field) in encoded_fields.iter().enumerate() {
        let bytes_per_value = fields_bytes_per_value[field_index];
        let parts = &encoded_field.buffers[0].parts;

        let mut packed_start = field_offset;
        for buf in parts {
            let num_values = buf.len() / bytes_per_value;
            for value_index in 0..num_values {
                let start = value_index * bytes_per_value;
                let buffer_slice = buf.slice_with_length(start, bytes_per_value);
                let buffer_slice = buffer_slice.as_slice();

                packed_vec[packed_start..packed_start + bytes_per_value]
                    .copy_from_slice(buffer_slice);
                packed_start += total_bytes_per_row;
            }
        }

        field_offset += bytes_per_value;
    }

    Buffer::from(packed_vec)
}

impl ArrayEncoder for PackedStructEncoder {
    fn encode(&self, arrays: &[ArrayRef], buffer_index: &mut u32) -> Result<EncodedArray> {
        let num_struct_fields = arrays[0]
            .as_any()
            .downcast_ref::<StructArray>()
            .unwrap()
            .num_columns();

        let mut inner_encodings = Vec::new();
        let mut global_packed_vec: Vec<Buffer> = Vec::new();

        for (arr_index, arr) in arrays.iter().enumerate() {
            let struct_array = arr.as_any().downcast_ref::<StructArray>().unwrap();

            let mut encoded_fields = Vec::new();
            let mut field_bytes_per_value = Vec::new();

            for field_index in 0..num_struct_fields {
                let field_datatype = struct_array.column(field_index).data_type();
                let field_array = struct_array.column(field_index).clone();

                // Compute encoded inner arrays
                let encoded_field =
                    self.inner_encoders[field_index].encode(&[field_array], &mut 0)?;
                let field_buffers = encoded_field.clone().buffers;

                encoded_fields.push(encoded_field.clone());

                // We assume there is only one outer buffer per field
                assert_eq!(field_buffers.len(), 1);

                // Compute bytes per value for each field
                let bytes_per_value = field_datatype.byte_width();
                field_bytes_per_value.push(bytes_per_value);

                if arr_index == 0 {
                    inner_encodings.push(encoded_field.encoding);
                }
            }

            let packed_buffer = pack(encoded_fields, field_bytes_per_value);
            global_packed_vec.push(packed_buffer);
        }

        let index = *buffer_index;
        *buffer_index += 1;

        let packed_buffer = EncodedArrayBuffer {
            parts: global_packed_vec,
            index,
        };

        Ok(EncodedArray {
            buffers: vec![packed_buffer],
            encoding: pb::ArrayEncoding {
                array_encoding: Some(pb::array_encoding::ArrayEncoding::PackedStruct(
                    pb::PackedStruct {
                        inner: inner_encodings,
                        buffer: Some(pb::Buffer {
                            buffer_index: index,
                            buffer_type: pb::buffer::BufferType::Page as i32,
                        }),
                    },
                )),
            },
        })
    }
}

#[cfg(test)]
pub mod tests {

    use arrow::array::ArrayData;
    use arrow_array::{
        Array, ArrayRef, FixedSizeListArray, Int32Array, StructArray, UInt64Array, UInt8Array,
    };
    use arrow_schema::{DataType, Field, Fields};
    use std::{collections::HashMap, sync::Arc, vec};

    use crate::testing::{
        check_round_trip_encoding_of_data, check_round_trip_encoding_random, TestCases,
    };

    #[test_log::test(tokio::test)]
    async fn test_random_packed_struct() {
        let data_type = DataType::Struct(Fields::from(vec![
            Field::new("a", DataType::UInt64, false),
            Field::new("b", DataType::UInt32, false),
        ]));
        let field = Field::new("", data_type, false);

        let mut metadata = HashMap::new();
        metadata.insert("packed".to_string(), "true".to_string());

        check_round_trip_encoding_random(field, metadata).await;
    }

    #[test_log::test(tokio::test)]
    async fn test_specific_packed_struct() {
        let array1 = Arc::new(UInt64Array::from(vec![1, 2, 3, 4]));
        let array2 = Arc::new(Int32Array::from(vec![5, 6, 7, 8]));
        let array3 = Arc::new(UInt8Array::from(vec![9, 10, 11, 12]));

        let struct_array1 = Arc::new(StructArray::from(vec![
            (
                Arc::new(Field::new("x", DataType::UInt64, false)),
                array1.clone() as ArrayRef,
            ),
            (
                Arc::new(Field::new("y", DataType::Int32, false)),
                array2.clone() as ArrayRef,
            ),
            (
                Arc::new(Field::new("z", DataType::UInt8, false)),
                array3.clone() as ArrayRef,
            ),
        ]));

        let array4 = Arc::new(UInt64Array::from(vec![13, 14, 15, 16]));
        let array5 = Arc::new(Int32Array::from(vec![17, 18, 19, 20]));
        let array6 = Arc::new(UInt8Array::from(vec![21, 22, 23, 24]));

        let struct_array2 = Arc::new(StructArray::from(vec![
            (
                Arc::new(Field::new("x", DataType::UInt64, false)),
                array4.clone() as ArrayRef,
            ),
            (
                Arc::new(Field::new("y", DataType::Int32, false)),
                array5.clone() as ArrayRef,
            ),
            (
                Arc::new(Field::new("z", DataType::UInt8, false)),
                array6.clone() as ArrayRef,
            ),
        ]));

        let test_cases = TestCases::default()
            .with_range(0..2)
            .with_range(0..6)
            .with_range(1..4)
            .with_indices(vec![1, 3, 7]);

        let mut metadata = HashMap::new();
        metadata.insert("packed".to_string(), "true".to_string());

        check_round_trip_encoding_of_data(
            vec![struct_array1, struct_array2],
            &test_cases,
            metadata,
        )
        .await;
    }

    #[test_log::test(tokio::test)]
    async fn test_fsl_packed_struct() {
        let int_array = Arc::new(Int32Array::from(vec![12, 13, 14, 15]));

        let list_data_type =
            DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Int32, true)), 3);
        let inner_array = Int32Array::from(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]);
        let list_data = ArrayData::builder(list_data_type.clone())
            .len(4)
            .add_child_data(inner_array.into_data())
            .build()
            .unwrap();
        let list_array = FixedSizeListArray::from(list_data);

        let struct_array = Arc::new(StructArray::from(vec![
            (
                Arc::new(Field::new("x", list_data_type.clone(), false)),
                Arc::new(list_array) as ArrayRef,
            ),
            (
                Arc::new(Field::new("x", DataType::Int32, false)),
                int_array as ArrayRef,
            ),
        ]));

        let test_cases = TestCases::default()
            .with_range(1..3)
            .with_range(0..1)
            .with_range(2..4)
            .with_indices(vec![0, 2, 3]);

        let mut metadata = HashMap::new();
        metadata.insert("packed".to_string(), "true".to_string());

        check_round_trip_encoding_of_data(vec![struct_array], &test_cases, metadata).await;
    }
}