1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors
//! Utilities and traits for scheduling & decoding data
//!
//! Reading data involves two steps: scheduling and decoding. The
//! scheduling step is responsible for figuring out what data is needed
//! and issuing the appropriate I/O requests. The decoding step is
//! responsible for taking the loaded data and turning it into Arrow
//! arrays.
//!
//! # Scheduling
//!
//! Scheduling is split into [`self::FieldScheduler`] and [`self::PageScheduler`].
//! There is one field scheduler for each output field, which may map to many
//! columns of actual data. A field scheduler is responsible for figuring out
//! the order in which pages should be scheduled. Field schedulers then delegate
//! to page schedulers to figure out the I/O requests that need to be made for
//! the page.
//!
//! Page schedulers also create the decoders that will be used to decode the
//! scheduled data.
//!
//! # Decoding
//!
//! Decoders are split into [`self::PhysicalPageDecoder`] and
//! [`self::LogicalPageDecoder`]. Note that both physical and logical decoding
//! happens on a per-page basis. There is no concept of a "field decoder" or
//! "column decoder".
//!
//! The physical decoders handle lower level encodings. They have a few advantages:
//!
//! * They do not need to decode into an Arrow array and so they don't need
//! to be enveloped into the Arrow filesystem (e.g. Arrow doesn't have a
//! bit-packed type. We can use variable-length binary but that is kind
//! of awkward)
//! * They can decode into an existing allocation. This can allow for "page
//! bridging". If we are trying to decode into a batch of 1024 rows and
//! the rows 0..1024 are spread across two pages then we can avoid a memory
//! copy by allocating once and decoding each page into the outer allocation.
//! (note: page bridging is not actually implemented yet)
//!
//! However, there are some limitations for physical decoders:
//!
//! * They are constrained to a single column
//! * The API is more complex
//!
//! The logical decoders are designed to map one or more columns of Lance
//! data into an Arrow array.
//!
//! Typically, a "logical encoding" will have both a logical decoder and a field scheduler.
//! Meanwhile, a "physical encoding" will have a physical decoder but no corresponding field
//! scheduler.git add --all
//!
//!
//! # General notes
//!
//! Encodings are typically nested into each other to form a tree. The top of the tree is
//! the user requested schema. Each field in that schema is assigned to one top-level logical
//! encoding. That encoding can then contain other logical encodings or physical encodings.
//! Physical encodings can also contain other physical encodings.
//!
//! So, for example, a single field in the Arrow schema might have the type List<UInt32>
//!
//! The encoding tree could then be:
//!
//! root: List (logical encoding)
//! - indices: Primitive (logical encoding)
//! - column: Basic (physical encoding)
//! - validity: Bitmap (physical encoding)
//! - values: RLE (physical encoding)
//! - runs: Value (physical encoding)
//! - values: Value (physical encoding)
//! - items: Primitive (logical encoding)
//! - column: Basic (physical encoding)
//! - values: Value (phsyical encoding)
//!
//! Note that, in this example, root.items.column does not have a validity because there were
//! no nulls in the page.
//!
//! ## Multiple buffers or multiple columns?
//!
//! Note that there are many different ways we can write encodings. For example, we might
//! store primitive fields in a single column with two buffers (one for validity and one for
//! values)
//!
//! On the other hand, we could also store a primitive field as two different columns. One
//! that yields a non-nullable boolean array and one that yields a non-nullable array of items.
//! Then we could combine these two arrays into a single array where the boolean array is the
//! bitmap. There are a few subtle differences between the approaches:
//!
//! * Storing things as multiple buffers within the same column is generally more efficient and
//! easier to schedule. For example, in-batch coalescing is very easy but can only be done
//! on data that is in the same page.
//! * When things are stored in multiple columns you have to worry about their pages not being
//! in sync. In our previous validity / values example this means we might have to do some
//! memory copies to get the validity array and values arrays to be the same length as
//! decode.
//! * When things are stored in a single column, projection is impossible. For example, if we
//! tried to store all the struct fields in a single column with lots of buffers then we wouldn't
//! be able to read back individual fields of the struct.
//!
//! The fixed size list decoding is an interesting example because it is actually both a physical
//! encoding and a logical encoding. A fixed size list of a physical encoding is, itself, a physical
//! encoding (e.g. a fixed size list of doubles). However, a fixed size list of a logical encoding
//! is a logical encoding (e.g. a fixed size list of structs).
//!
//! # The scheduling loop
//!
//! Reading a Lance file involves both scheduling and decoding. Its generally expected that these
//! will run as two separate threads.
//!
//! ```text
//!
//! I/O PARALLELISM
//! Issues
//! Requests ┌─────────────────┐
//! │ │ Wait for
//! ┌──────────► I/O Service ├─────► Enough I/O ◄─┐
//! │ │ │ For batch │
//! │ └─────────────────┘ │3 │
//! │ │ │
//! │ │ │2
//! ┌─────────────────────┴─┐ ┌─────────▼───────┴┐
//! │ │ │ │Poll
//! │ Batch Decode │ Decode tasks sent via channel│ Batch Decode │1
//! │ Scheduler ├─────────────────────────────►│ Stream ◄─────
//! │ │ │ │
//! └─────▲─────────────┬───┘ └─────────┬────────┘
//! │ │ │4
//! │ │ │
//! └─────────────┘ ┌────────┴────────┐
//! Caller of schedule_range Buffer polling │ │
//! will be scheduler thread to achieve CPU │ Decode Batch ├────►
//! and schedule one decode parallelism │ Task │
//! task (and all needed I/O) (thread per │ │
//! per logical page batch) └─────────────────┘
//! ```
//!
//! The scheduling thread will work through the file from the
//! start to the end as quickly as possible. Data is scheduled one page at a time in a row-major
//! fashion. For example, imagine we have a file with the following page structure:
//!
//! ```text
//! Score (Float32) | C0P0 |
//! Id (16-byte UUID) | C1P0 | C1P1 | C1P2 | C1P3 |
//! Vector (4096 bytes) | C2P0 | C2P1 | C2P2 | C2P3 | .. | C2P1024 |
//! ```
//!
//! This would be quite common as each of these pages has the same number of bytes. Let's pretend
//! each page is 1MiB and so there are 256Ki rows of data. Each page of `Score` has 256Ki rows.
//! Each page of `Id` has 64Ki rows. Each page of `Vector` has 256 rows. The scheduler would then
//! schedule in the following order:
//!
//! C0 P0
//! C1 P0
//! C2 P0
//! C2 P1
//! ... (254 pages omitted)
//! C2 P255
//! C1 P1
//! C2 P256
//! ... (254 pages omitted)
//! C2 P511
//! C1 P2
//! C2 P512
//! ... (254 pages omitted)
//! C2 P767
//! C1 P3
//! C2 P768
//! ... (254 pages omitted)
//! C2 P1024
//!
//! This is the ideal scheduling order because it means we can decode complete rows as quickly as possible.
//! Note that the scheduler thread does not need to wait for I/O to happen at any point. As soon as it starts
//! it will start scheduling one page of I/O after another until it has scheduled the entire file's worth of
//! I/O. This is slightly different than other file readers which have "row group parallelism" and will
//! typically only schedule X row groups worth of reads at a time.
//!
//! In the near future there will be a backpressure mechanism and so it may need to stop/pause if the compute
//! falls behind.
//!
//! ## Indirect I/O
//!
//! Regrettably, there are times where we cannot know exactly what data we need until we have partially decoded
//! the file. This happens when we have variable sized list data. In that case the scheduling task for that
//! page will only schedule the first part of the read (loading the list offsets). It will then immediately
//! spawn a new tokio task to wait for that I/O and decode the list offsets. That follow-up task is not part
//! of the scheduling loop or the decode loop. It is a free task. Once the list offsets are decoded we submit
//! a follow-up I/O task. This task is scheduled at a high priority because the decoder is going to need it soon.
//!
//! # The decode loop
//!
//! As soon as the scheduler starts we can start decoding. Each time we schedule a page we
//! push a decoder for that page's data into a channel. The decode loop
//! ([`BatchDecodeStream`]) reads from that channel. Each time it receives a decoder it
//! waits until the decoder has all of its data. Then it grabs the next decoder. Once it has
//! enough loaded decoders to complete a batch worth of rows it will spawn a "decode batch task".
//!
//! These batch decode tasks perform the actual CPU work of decoding the loaded data into Arrow
//! arrays. This may involve signifciant CPU processing like decompression or arithmetic in order
//! to restore the data to its correct in-memory representation.
//!
//! ## Batch size
//!
//! The `BatchDecodeStream` is configured with a batch size. This does not need to have any
//! relation to the page size(s) used to write the data. This keeps our compute work completely
//! independent of our I/O work. We suggest using small batch sizes:
//!
//! * Batches should fit in CPU cache (at least L3)
//! * More batches means more opportunity for parallelism
//! * The "batch overhead" is very small in Lance compared to other formats because it has no
//! relation to the way the data is stored.
use std::collections::VecDeque;
use std::sync::Once;
use std::{ops::Range, sync::Arc};
use arrow_array::cast::AsArray;
use arrow_array::{ArrayRef, RecordBatch};
use arrow_schema::{DataType, Field as ArrowField, Fields, Schema as ArrowSchema};
use bytes::Bytes;
use futures::future::BoxFuture;
use futures::stream::BoxStream;
use futures::{FutureExt, StreamExt};
use lance_arrow::DataTypeExt;
use lance_core::datatypes::{Field, Schema};
use log::{trace, warn};
use snafu::{location, Location};
use tokio::sync::mpsc::{self, unbounded_channel};
use lance_core::{Error, Result};
use tracing::instrument;
use crate::data::DataBlock;
use crate::encoder::{values_column_encoding, EncodedBatch};
use crate::encodings::logical::list::{ListFieldScheduler, OffsetPageInfo};
use crate::encodings::logical::primitive::PrimitiveFieldScheduler;
use crate::encodings::logical::r#struct::{SimpleStructDecoder, SimpleStructScheduler};
use crate::encodings::physical::{ColumnBuffers, FileBuffers};
use crate::format::pb;
use crate::{BufferScheduler, EncodingsIo};
// If users are getting batches over 10MiB large then it's time to reduce the batch size
const BATCH_SIZE_BYTES_WARNING: u64 = 10 * 1024 * 1024;
/// Metadata describing a page in a file
///
/// This is typically created by reading the metadata section of a Lance file
#[derive(Debug)]
pub struct PageInfo {
/// The number of rows in the page
pub num_rows: u64,
/// The encoding that explains the buffers in the page
pub encoding: pb::ArrayEncoding,
/// The offsets and sizes of the buffers in the file
pub buffer_offsets_and_sizes: Arc<[(u64, u64)]>,
}
/// Metadata describing a column in a file
///
/// This is typically created by reading the metadata section of a Lance file
#[derive(Debug, Clone)]
pub struct ColumnInfo {
/// The index of the column in the file
pub index: u32,
/// The metadata for each page in the column
pub page_infos: Arc<[PageInfo]>,
/// File positions and their sizes of the column-level buffers
pub buffer_offsets_and_sizes: Arc<[(u64, u64)]>,
pub encoding: pb::ColumnEncoding,
}
impl ColumnInfo {
/// Create a new instance
pub fn new(
index: u32,
page_infos: Arc<[PageInfo]>,
buffer_offsets_and_sizes: Vec<(u64, u64)>,
encoding: pb::ColumnEncoding,
) -> Self {
Self {
index,
page_infos,
buffer_offsets_and_sizes: buffer_offsets_and_sizes.into_boxed_slice().into(),
encoding,
}
}
}
/// The scheduler for decoding batches
///
/// Lance decoding is done in two steps, scheduling, and decoding. The
/// scheduling tends to be lightweight and should quickly figure what data
/// is needed from the disk issue the appropriate I/O requests. A decode task is
/// created to eventually decode the data (once it is loaded) and scheduling
/// moves on to scheduling the next page.
///
/// Meanwhile, it's expected that a decode stream will be setup to run at the
/// same time. Decode tasks take the data that is loaded and turn it into
/// Arrow arrays.
///
/// This approach allows us to keep our I/O parallelism and CPU parallelism
/// completely separate since those are often two very different values.
///
/// Backpressure should be achieved via the I/O service. Requests that are
/// issued will pile up if the decode stream is not polling quickly enough.
/// The [`crate::EncodingsIo::submit_request`] function should return a pending
/// future once there are too many I/O requests in flight.
///
/// TODO: Implement backpressure
pub struct DecodeBatchScheduler {
pub root_scheduler: Arc<dyn FieldScheduler>,
pub root_fields: Fields,
}
/// Represents a series of decoder strategies
///
/// These strategies will be applied, in order, to determine
/// which decoder to use for a field.
#[derive(Debug, Clone)]
pub struct DecoderMiddlewareChain {
chain: Vec<Arc<dyn FieldDecoderStrategy>>,
}
impl Default for DecoderMiddlewareChain {
fn default() -> Self {
Self {
chain: Default::default(),
}
.add_strategy(Arc::new(CoreFieldDecoderStrategy::default()))
}
}
impl DecoderMiddlewareChain {
/// Creates an empty decoder chain
pub fn new() -> Self {
Self { chain: Vec::new() }
}
/// Adds a decoder to the end of the chain
pub fn add_strategy(mut self, decoder: Arc<dyn FieldDecoderStrategy>) -> Self {
self.chain.push(decoder);
self
}
/// Obtain a cursor into the chain that can be used to create
/// field schedulers
pub(crate) fn cursor<'a>(
&'a self,
io: &'a Arc<dyn EncodingsIo>,
) -> DecoderMiddlewareChainCursor<'a> {
DecoderMiddlewareChainCursor {
chain: self,
io,
cur_idx: 0,
path: VecDeque::new(),
}
}
}
/// A cursor into a decoder middleware chain
///
/// Each field scheduler is given a cursor during the create_field_scheduler
/// call. This cursor can be used both to create child field schedulers and
/// to create a scheduler from an inner encoding.
pub struct DecoderMiddlewareChainCursor<'a> {
chain: &'a DecoderMiddlewareChain,
io: &'a Arc<dyn EncodingsIo>,
path: VecDeque<u32>,
cur_idx: usize,
}
pub type ChosenFieldScheduler<'a> = (
DecoderMiddlewareChainCursor<'a>,
Result<Arc<dyn FieldScheduler>>,
);
impl<'a> DecoderMiddlewareChainCursor<'a> {
/// Returns the current path into the field being decoded
pub fn current_path(&self) -> &VecDeque<u32> {
&self.path
}
/// Returns the I/O service which can be used to grab column metadata
pub fn io(&self) -> &Arc<dyn EncodingsIo> {
self.io
}
/// Delegates responsibilty to the next encoder in the chain
///
/// Field schedulers should call this method when:
///
/// * They do not understand or handle the encoding
/// * They wrap an encoding and want a scheduler for the inner encoding
pub fn next(
mut self,
field: &Field,
column_infos: &mut ColumnInfoIter,
buffers: FileBuffers,
) -> Result<ChosenFieldScheduler<'a>> {
if self.cur_idx >= self.chain.chain.len() {
return Err(Error::invalid_input(
format!(
"The user requested a field {:?} but no decoders were registered to handle it",
field
),
location!(),
));
}
let item = &self.chain.chain[self.cur_idx];
self.cur_idx += 1;
item.create_field_scheduler(field, column_infos, buffers, self)
}
/// Restarts the decoder chain without creating a new "child"
///
/// This can be useful, for example, when a field scheduler has
/// an inner scheduler, and the current / parent strategies might
/// apply to the inner scheduler.
///
/// If the current / parent strategies should not be consulted
/// then call [`Self::next`] instead.
pub fn restart_at_current(
mut self,
field: &Field,
column_infos: &mut ColumnInfoIter,
buffers: FileBuffers,
) -> Result<ChosenFieldScheduler<'a>> {
self.cur_idx = 0;
self.next(field, column_infos, buffers)
}
/// Restarts the decoder chain for a new "child" field. The main
/// difference between this and [`Self::restart_at_current`] is that
/// this method will modify [`Self::current_path`]
pub fn new_child(
mut self,
child_idx: u32,
field: &Field,
column_infos: &mut ColumnInfoIter,
buffers: FileBuffers,
) -> Result<ChosenFieldScheduler<'a>> {
self.path.push_back(child_idx);
self.cur_idx = 0;
self.next(field, column_infos, buffers)
}
/// Starts the decoding process for a field
pub(crate) fn start(
mut self,
field: &Field,
column_infos: &mut ColumnInfoIter,
buffers: FileBuffers,
) -> Result<ChosenFieldScheduler<'a>> {
self.path.clear();
self.cur_idx = 0;
self.next(field, column_infos, buffers)
}
}
pub struct ColumnInfoIter<'a> {
column_infos: &'a [ColumnInfo],
column_indices: &'a [u32],
column_info_pos: usize,
column_indices_pos: usize,
}
impl<'a> ColumnInfoIter<'a> {
pub fn new(column_infos: &'a [ColumnInfo], column_indices: &'a [u32]) -> Self {
let initial_pos = column_indices[0] as usize;
Self {
column_infos,
column_indices,
column_info_pos: initial_pos,
column_indices_pos: 0,
}
}
pub fn peek(&self) -> &'a ColumnInfo {
&self.column_infos[self.column_info_pos]
}
pub(crate) fn next_top_level(&mut self) {
self.column_indices_pos += 1;
if self.column_indices_pos < self.column_indices.len() {
self.column_info_pos = self.column_indices[self.column_indices_pos] as usize;
} else {
self.column_info_pos = self.column_infos.len();
}
}
}
impl<'a> Iterator for ColumnInfoIter<'a> {
type Item = &'a ColumnInfo;
fn next(&mut self) -> Option<Self::Item> {
if self.column_info_pos < self.column_infos.len() {
let info = &self.column_infos[self.column_info_pos];
self.column_info_pos += 1;
Some(info)
} else {
None
}
}
}
// A trait that handles the mapping from Arrow schema to field decoders.
//
// Note that the decoders can only be figured out using both the schema AND
// the column metadata. In theory, one could infer the decoder / column type
// using only the column metadata. However, field nullability would be
// missing / incorrect and its also not as easy as it sounds since pages can
// have different encodings and those encodings often have various layers.
// Also, sometimes the inference is just impossible. For example,
// Timestamp, Float64, Int64, and UInt64 will all be encoded as 8-byte value
// encoding. The only way to know the data type is to look at the schema.
//
// We also can't just guess the encoding based on the schema. This is because
// there may be multiple different ways to encode a field and it may even
// change on a page-by-page basis.
//
// For example, if a field is a struct field then we expect a header
// column that could have one of a few different encodings.
//
// This could be encoded with "simple struct" and an empty header column
// followed by the shredded child columns. It could be encoded as a nullable
// struct where the nulls are in a dense bitmap. It could even be encoded
// as a packed (row-major) struct where there is only a single column containing
// all of the data!
//
// TODO: Still lots of research to do here in different ways that
// we can map schemas to buffers.
//
// Example: repetition levels - the validity bitmaps for nested
// fields are fatter (more than one bit per row) and contain
// validity information about parent fields (e.g. is this a
// struct-struct-null or struct-null-null or null-null-null?)
//
// Examples: sentinel-shredding - instead of creating a wider
// validity bitmap we assign more sentinels to each column. So
// if the values of an int32 array have a max of 1000 then we can
// use 1001 to mean null int32 and 1002 to mean null parent.
//
// Examples: Sparse structs - the struct column has a validity
// bitmap that must be read if you plan on reading the struct
// or any nested field. However, this could be a compressed
// bitmap stored in metadata. A perk for this approach is that
// the child fields can then have a smaller size than the parent
// field. E.g. if a struct is 1000 rows and 900 of them are
// null then there is one validity bitmap of length 1000 and
// 100 rows of each of the children.
pub trait FieldDecoderStrategy: Send + Sync + std::fmt::Debug {
/// Called to create a field scheduler for a field
///
/// Stratgies can examine:
/// * The target field
/// * The column metadata (potentially consuming multiple columns)
///
/// If a strategy does not handle an encoding it should call
/// `chain.next` to delegate to the next strategy in the chain.
///
/// The actual scheduler creation is asynchronous. This is because
/// the scheduler may need to read column metadata from disk.
fn create_field_scheduler<'a>(
&self,
field: &Field,
column_infos: &mut ColumnInfoIter,
buffers: FileBuffers,
chain: DecoderMiddlewareChainCursor<'a>,
) -> Result<ChosenFieldScheduler<'a>>;
}
/// The core decoder strategy handles all the various Arrow types
#[derive(Debug, Default)]
pub struct CoreFieldDecoderStrategy {
pub validate_data: bool,
}
impl CoreFieldDecoderStrategy {
/// This is just a sanity check to ensure there is no "wrapped encodings"
/// that haven't been handled.
fn ensure_values_encoded(column_info: &ColumnInfo, path: &VecDeque<u32>) -> Result<()> {
let column_encoding = column_info
.encoding
.column_encoding
.as_ref()
.ok_or_else(|| {
Error::invalid_input(
format!(
"the column at index {} was missing a ColumnEncoding",
column_info.index
),
location!(),
)
})?;
if matches!(
column_encoding,
pb::column_encoding::ColumnEncoding::Values(_)
) {
Ok(())
} else {
Err(Error::invalid_input(format!("the column at index {} mapping to the input field at {:?} has column encoding {:?} and no decoder is registered to handle it", column_info.index, path, column_encoding), location!()))
}
}
fn is_primitive(data_type: &DataType) -> bool {
if data_type.is_primitive() | data_type.is_binary_like() {
true
} else {
match data_type {
// DataType::is_primitive doesn't consider these primitive but we do
DataType::Boolean | DataType::Null | DataType::FixedSizeBinary(_) => true,
DataType::FixedSizeList(inner, _) => Self::is_primitive(inner.data_type()),
_ => false,
}
}
}
fn create_primitive_scheduler(
&self,
data_type: &DataType,
path: &VecDeque<u32>,
column: &ColumnInfo,
buffers: FileBuffers,
) -> Result<Arc<dyn FieldScheduler>> {
Self::ensure_values_encoded(column, path)?;
// Primitive fields map to a single column
let column_buffers = ColumnBuffers {
file_buffers: buffers,
positions_and_sizes: &column.buffer_offsets_and_sizes,
};
Ok(Arc::new(PrimitiveFieldScheduler::new(
data_type.clone(),
column.page_infos.clone(),
column_buffers,
self.validate_data,
)))
}
/// Helper method to verify the page encoding of a struct header column
fn check_simple_struct(column_info: &ColumnInfo, path: &VecDeque<u32>) -> Result<()> {
Self::ensure_values_encoded(column_info, path)?;
if column_info.page_infos.len() != 1 {
return Err(Error::InvalidInput { source: format!("Due to schema we expected a struct column but we received a column with {} pages and right now we only support struct columns with 1 page", column_info.page_infos.len()).into(), location: location!() });
}
let encoding = &column_info.page_infos[0].encoding;
match encoding.array_encoding.as_ref().unwrap() {
pb::array_encoding::ArrayEncoding::Struct(_) => Ok(()),
_ => Err(Error::InvalidInput { source: format!("Expected a struct encoding because we have a struct field in the schema but got the encoding {:?}", encoding).into(), location: location!() }),
}
}
fn check_packed_struct(column_info: &ColumnInfo) -> bool {
let encoding = &column_info.page_infos[0].encoding;
matches!(
encoding.array_encoding.as_ref().unwrap(),
pb::array_encoding::ArrayEncoding::PackedStruct(_)
)
}
}
impl FieldDecoderStrategy for CoreFieldDecoderStrategy {
fn create_field_scheduler<'a>(
&self,
field: &Field,
column_infos: &mut ColumnInfoIter,
buffers: FileBuffers,
chain: DecoderMiddlewareChainCursor<'a>,
) -> Result<ChosenFieldScheduler<'a>> {
let data_type = field.data_type();
if Self::is_primitive(&data_type) {
let primitive_col = column_infos.next().unwrap();
let scheduler = self.create_primitive_scheduler(
&data_type,
chain.current_path(),
primitive_col,
buffers,
)?;
return Ok((chain, Ok(scheduler)));
}
match &data_type {
DataType::FixedSizeList(inner, _dimension) => {
// A fixed size list column could either be a physical or a logical decoder
// depending on the child data type.
if Self::is_primitive(inner.data_type()) {
let primitive_col = column_infos.next().unwrap();
let scheduler = self.create_primitive_scheduler(
&data_type,
chain.current_path(),
primitive_col,
buffers,
)?;
Ok((chain, Ok(scheduler)))
} else {
todo!()
}
}
DataType::Dictionary(_key_type, value_type) => {
if Self::is_primitive(value_type) {
let primitive_col = column_infos.next().unwrap();
let scheduler = self.create_primitive_scheduler(
&data_type,
chain.current_path(),
primitive_col,
buffers,
)?;
Ok((chain, Ok(scheduler)))
} else {
Err(Error::NotSupported {
source: format!(
"No way to decode into a dictionary field of type {}",
value_type
)
.into(),
location: location!(),
})
}
}
DataType::List(items_field) | DataType::LargeList(items_field) => {
let offsets_column = column_infos.next().unwrap();
Self::ensure_values_encoded(offsets_column, chain.current_path())?;
let offsets_column_buffers = ColumnBuffers {
file_buffers: buffers,
positions_and_sizes: &offsets_column.buffer_offsets_and_sizes,
};
let item_field_name = items_field.name().clone();
let (chain, items_scheduler) = chain.new_child(
/*child_idx=*/ 0,
&field.children[0],
column_infos,
buffers,
)?;
let items_scheduler = items_scheduler?;
let (inner_infos, null_offset_adjustments): (Vec<_>, Vec<_>) = offsets_column
.page_infos
.iter()
.map(|offsets_page| {
if let Some(pb::array_encoding::ArrayEncoding::List(list_encoding)) =
&offsets_page.encoding.array_encoding
{
let inner = PageInfo {
buffer_offsets_and_sizes: offsets_page
.buffer_offsets_and_sizes
.clone(),
encoding: list_encoding.offsets.as_ref().unwrap().as_ref().clone(),
num_rows: offsets_page.num_rows,
};
(
inner,
OffsetPageInfo {
offsets_in_page: offsets_page.num_rows,
null_offset_adjustment: list_encoding.null_offset_adjustment,
num_items_referenced_by_page: list_encoding.num_items,
},
)
} else {
// TODO: Should probably return Err here
panic!("Expected a list column");
}
})
.unzip();
let inner = Arc::new(PrimitiveFieldScheduler::new(
DataType::UInt64,
Arc::from(inner_infos.into_boxed_slice()),
offsets_column_buffers,
self.validate_data,
)) as Arc<dyn FieldScheduler>;
let offset_type = if matches!(data_type, DataType::List(_)) {
DataType::Int32
} else {
DataType::Int64
};
let items_type = items_field.data_type().clone();
let list_scheduler = Ok(Arc::new(ListFieldScheduler::new(
inner,
items_scheduler,
item_field_name.clone(),
items_type,
offset_type,
null_offset_adjustments,
)) as Arc<dyn FieldScheduler>);
Ok((chain, list_scheduler))
}
DataType::Struct(fields) => {
let column_info = column_infos.next().unwrap();
if Self::check_packed_struct(column_info) {
// use packed struct encoding
let scheduler = self.create_primitive_scheduler(
&data_type,
chain.current_path(),
column_info,
buffers,
)?;
Ok((chain, Ok(scheduler)))
} else {
// use default struct encoding
Self::check_simple_struct(column_info, chain.current_path()).unwrap();
let is_root = field.metadata.contains_key("__lance_decoder_root");
let mut child_schedulers = Vec::with_capacity(field.children.len());
let mut chain = chain;
for (i, field) in field.children.iter().enumerate() {
if is_root {
column_infos.next_top_level();
}
let (next_chain, field_scheduler) =
chain.new_child(i as u32, field, column_infos, buffers)?;
child_schedulers.push(field_scheduler?);
chain = next_chain;
}
let fields = fields.clone();
let struct_scheduler = Ok(Arc::new(SimpleStructScheduler::new(
child_schedulers,
fields,
)) as Arc<dyn FieldScheduler>);
// For now, we don't record nullability for structs. As a result, there is always
// only one "page" of struct data. In the future, this will change. A null-aware
// struct scheduler will need to first calculate how many rows are in the struct page
// and then find the child pages that overlap. This should be doable.
Ok((chain, struct_scheduler))
}
}
// TODO: Still need support for dictionary / RLE
_ => chain.next(field, column_infos, buffers),
}
}
}
/// Create's a dummy ColumnInfo for the root column
fn root_column(num_rows: u64) -> ColumnInfo {
let num_root_pages = num_rows.div_ceil(u32::MAX as u64);
let final_page_num_rows = num_rows % (u32::MAX as u64);
let root_pages = (0..num_root_pages)
.map(|i| PageInfo {
num_rows: if i == num_root_pages - 1 {
final_page_num_rows
} else {
u64::MAX
},
encoding: pb::ArrayEncoding {
array_encoding: Some(pb::array_encoding::ArrayEncoding::Struct(
pb::SimpleStruct {},
)),
},
buffer_offsets_and_sizes: Arc::new([]),
})
.collect::<Vec<_>>();
ColumnInfo {
buffer_offsets_and_sizes: Arc::new([]),
encoding: values_column_encoding(),
index: u32::MAX,
page_infos: Arc::from(root_pages),
}
}
impl DecodeBatchScheduler {
/// Creates a new decode scheduler with the expected schema and the column
/// metadata of the file.
pub fn try_new<'a>(
schema: &'a Schema,
column_indices: &[u32],
column_infos: &[Arc<ColumnInfo>],
file_buffer_positions_and_sizes: &'a Vec<(u64, u64)>,
num_rows: u64,
decoder_strategy: &DecoderMiddlewareChain,
io: &Arc<dyn EncodingsIo>,
) -> Result<Self> {
let buffers = FileBuffers {
positions_and_sizes: file_buffer_positions_and_sizes,
};
let arrow_schema = ArrowSchema::from(schema);
let root_fields = arrow_schema.fields().clone();
let mut columns = Vec::with_capacity(column_infos.len() + 1);
columns.push(root_column(num_rows));
columns.extend(column_infos.iter().map(|col| col.as_ref().clone()));
let adjusted_column_indices = [0_u32]
.into_iter()
.chain(column_indices.iter().map(|i| *i + 1))
.collect::<Vec<_>>();
let mut column_iter = ColumnInfoIter::new(&columns, &adjusted_column_indices);
let root_type = DataType::Struct(root_fields.clone());
let mut root_field = Field::try_from(&ArrowField::new("root", root_type, false))?;
root_field
.metadata
.insert("__lance_decoder_root".to_string(), "true".to_string());
let (_, root_scheduler) =
decoder_strategy
.cursor(io)
.start(&root_field, &mut column_iter, buffers)?;
let root_scheduler = root_scheduler?;
Ok(Self {
root_scheduler,
root_fields,
})
}
pub fn from_scheduler(root_scheduler: Arc<dyn FieldScheduler>, root_fields: Fields) -> Self {
Self {
root_scheduler,
root_fields,
}
}
fn do_schedule_ranges(
&mut self,
ranges: &[Range<u64>],
filter: &FilterExpression,
io: Arc<dyn EncodingsIo>,
mut schedule_action: impl FnMut(Result<DecoderMessage>),
) {
let rows_requested = ranges.iter().map(|r| r.end - r.start).sum::<u64>();
trace!("Scheduling ranges {:?} ({} rows)", ranges, rows_requested);
let mut context = SchedulerContext::new(io);
let maybe_root_job = self.root_scheduler.schedule_ranges(ranges, filter);
if let Err(schedule_ranges_err) = maybe_root_job {
schedule_action(Err(schedule_ranges_err));
return;
}
let mut root_job = maybe_root_job.unwrap();
let mut num_rows_scheduled = 0;
let mut rows_to_schedule = root_job.num_rows();
trace!("Scheduled ranges refined to {} rows", rows_to_schedule);
while rows_to_schedule > 0 {
let maybe_next_scan_line = root_job.schedule_next(&mut context, num_rows_scheduled);
if let Err(schedule_next_err) = maybe_next_scan_line {
schedule_action(Err(schedule_next_err));
return;
}
let next_scan_line = maybe_next_scan_line.unwrap();
num_rows_scheduled += next_scan_line.rows_scheduled;
rows_to_schedule -= next_scan_line.rows_scheduled;
trace!(
"Scheduled scan line of {} rows and {} decoders",
next_scan_line.rows_scheduled,
next_scan_line.decoders.len()
);
schedule_action(Ok(DecoderMessage {
scheduled_so_far: num_rows_scheduled,
decoders: next_scan_line.decoders,
}));
}
trace!("Finished scheduling {} ranges", ranges.len());
}
// This method is similar to schedule_ranges but instead of
// sending the decoders to a channel it collects them all into a vector
pub fn schedule_ranges_to_vec(
&mut self,
ranges: &[Range<u64>],
filter: &FilterExpression,
io: Arc<dyn EncodingsIo>,
) -> Result<Vec<DecoderMessage>> {
let mut decode_messages = Vec::new();
self.do_schedule_ranges(ranges, filter, io, |msg| decode_messages.push(msg));
decode_messages.into_iter().collect::<Result<Vec<_>>>()
}
/// Schedules the load of a multiple ranges of rows
///
/// Ranges must be non-overlapping and in sorted order
///
/// # Arguments
///
/// * `ranges` - The ranges of rows to load
/// * `sink` - A channel to send the decode tasks
/// * `scheduler` An I/O scheduler to issue I/O requests
#[instrument(skip_all)]
pub fn schedule_ranges(
&mut self,
ranges: &[Range<u64>],
filter: &FilterExpression,
sink: mpsc::UnboundedSender<Result<DecoderMessage>>,
scheduler: Arc<dyn EncodingsIo>,
) {
self.do_schedule_ranges(ranges, filter, scheduler, |msg| {
sink.send(msg).unwrap();
})
}
/// Schedules the load of a range of rows
///
/// # Arguments
///
/// * `range` - The range of rows to load
/// * `sink` - A channel to send the decode tasks
/// * `scheduler` An I/O scheduler to issue I/O requests
#[instrument(skip_all)]
pub fn schedule_range(
&mut self,
range: Range<u64>,
filter: &FilterExpression,
sink: mpsc::UnboundedSender<Result<DecoderMessage>>,
scheduler: Arc<dyn EncodingsIo>,
) {
self.schedule_ranges(&[range.clone()], filter, sink, scheduler)
}
/// Schedules the load of selected rows
///
/// # Arguments
///
/// * `indices` - The row indices to load (these must be in ascending order!)
/// * `sink` - A channel to send the decode tasks
/// * `scheduler` An I/O scheduler to issue I/O requests
pub fn schedule_take(
&mut self,
indices: &[u64],
filter: &FilterExpression,
sink: mpsc::UnboundedSender<Result<DecoderMessage>>,
scheduler: Arc<dyn EncodingsIo>,
) {
debug_assert!(indices.windows(2).all(|w| w[0] <= w[1]));
if indices.is_empty() {
return;
}
trace!("Scheduling take of {} rows", indices.len());
let ranges = indices
.iter()
.map(|&idx| idx..(idx + 1))
.collect::<Vec<_>>();
self.schedule_ranges(&ranges, filter, sink, scheduler)
}
pub fn new_root_decoder_ranges(&self, ranges: &[Range<u64>]) -> SimpleStructDecoder {
let rows_to_read = ranges
.iter()
.map(|range| range.end - range.start)
.sum::<u64>();
SimpleStructDecoder::new(self.root_fields.clone(), rows_to_read)
}
pub fn new_root_decoder_indices(&self, indices: &[u64]) -> SimpleStructDecoder {
SimpleStructDecoder::new(self.root_fields.clone(), indices.len() as u64)
}
}
pub struct ReadBatchTask {
pub task: BoxFuture<'static, Result<RecordBatch>>,
pub num_rows: u32,
}
/// A stream that takes scheduled jobs and generates decode tasks from them.
pub struct BatchDecodeStream {
context: DecoderContext,
root_decoder: SimpleStructDecoder,
rows_remaining: u64,
rows_per_batch: u32,
rows_scheduled: u64,
rows_drained: u64,
scheduler_exhuasted: bool,
emitted_batch_size_warning: Arc<Once>,
}
impl BatchDecodeStream {
/// Create a new instance of a batch decode stream
///
/// # Arguments
///
/// * `scheduled` - an incoming stream of decode tasks from a
/// [`crate::decode::DecodeBatchScheduler`]
/// * `schema` - the scheam of the data to create
/// * `rows_per_batch` the number of rows to create before making a batch
/// * `num_rows` the total number of rows scheduled
/// * `num_columns` the total number of columns in the file
pub fn new(
scheduled: mpsc::UnboundedReceiver<Result<DecoderMessage>>,
rows_per_batch: u32,
num_rows: u64,
root_decoder: SimpleStructDecoder,
) -> Self {
Self {
context: DecoderContext::new(scheduled),
root_decoder,
rows_remaining: num_rows,
rows_per_batch,
rows_scheduled: 0,
rows_drained: 0,
scheduler_exhuasted: false,
emitted_batch_size_warning: Arc::new(Once::new()),
}
}
fn accept_decoder(&mut self, decoder: DecoderReady) -> Result<()> {
if decoder.path.is_empty() {
// The root decoder we can ignore
Ok(())
} else {
self.root_decoder.accept_child(decoder)
}
}
async fn wait_for_scheduled(&mut self, scheduled_need: u64) -> Result<u64> {
if self.scheduler_exhuasted {
return Ok(self.rows_scheduled);
}
while self.rows_scheduled < scheduled_need {
let next_message = self.context.source.recv().await;
match next_message {
Some(scan_line) => {
let scan_line = scan_line?;
self.rows_scheduled = scan_line.scheduled_so_far;
for decoder in scan_line.decoders {
self.accept_decoder(decoder)?;
}
}
None => {
// Schedule ended before we got all the data we expected. This probably
// means some kind of pushdown filter was applied and we didn't load as
// much data as we thought we would.
self.scheduler_exhuasted = true;
return Ok(self.rows_scheduled);
}
}
}
Ok(scheduled_need)
}
#[instrument(level = "debug", skip_all)]
async fn next_batch_task(&mut self) -> Result<Option<NextDecodeTask>> {
trace!(
"Draining batch task (rows_remaining={} rows_drained={} rows_scheduled={})",
self.rows_remaining,
self.rows_drained,
self.rows_scheduled,
);
if self.rows_remaining == 0 {
return Ok(None);
}
let mut to_take = self.rows_remaining.min(self.rows_per_batch as u64);
self.rows_remaining -= to_take;
let scheduled_need = (self.rows_drained + to_take).saturating_sub(self.rows_scheduled);
trace!("scheduled_need = {} because rows_drained = {} and to_take = {} and rows_scheduled = {}", scheduled_need, self.rows_drained, to_take, self.rows_scheduled);
if scheduled_need > 0 {
let desired_scheduled = scheduled_need + self.rows_scheduled;
trace!(
"Draining from scheduler (desire at least {} scheduled rows)",
desired_scheduled
);
let actually_scheduled = self.wait_for_scheduled(desired_scheduled).await?;
if actually_scheduled < desired_scheduled {
let under_scheduled = desired_scheduled - actually_scheduled;
to_take -= under_scheduled;
}
}
if to_take == 0 {
return Ok(None);
}
let avail = self.root_decoder.avail();
trace!("Top level page has {} rows already available", avail);
if avail < to_take {
trace!(
"Top level page waiting for an additional {} rows",
to_take - avail
);
self.root_decoder.wait(to_take).await?;
}
let next_task = self.root_decoder.drain(to_take)?;
self.rows_drained += to_take;
Ok(Some(next_task))
}
#[instrument(level = "debug", skip_all)]
fn task_to_batch(
task: NextDecodeTask,
emitted_batch_size_warning: Arc<Once>,
) -> Result<RecordBatch> {
let struct_arr = task.task.decode();
match struct_arr {
Ok(struct_arr) => {
let batch = RecordBatch::from(struct_arr.as_struct());
let size_bytes = batch.get_array_memory_size() as u64;
if size_bytes > BATCH_SIZE_BYTES_WARNING {
emitted_batch_size_warning.call_once(|| {
let size_mb = size_bytes / 1024 / 1024;
warn!("Lance read in a single batch that contained more than {}MiB of data. You may want to consider reducing the batch size.", size_mb);
});
}
Ok(batch)
}
Err(e) => {
let e = Error::Internal {
message: format!("Error decoding batch: {}", e),
location: location!(),
};
Err(e)
}
}
}
pub fn into_stream(self) -> BoxStream<'static, ReadBatchTask> {
let stream = futures::stream::unfold(self, |mut slf| async move {
let next_task = slf.next_batch_task().await;
let next_task = next_task.transpose().map(|next_task| {
let num_rows = next_task.as_ref().map(|t| t.num_rows).unwrap_or(0);
let emitted_batch_size_warning = slf.emitted_batch_size_warning.clone();
let task = tokio::spawn(async move {
let next_task = next_task?;
Self::task_to_batch(next_task, emitted_batch_size_warning)
});
(task, num_rows)
});
next_task.map(|(task, num_rows)| {
let task = task.map(|join_wrapper| join_wrapper.unwrap()).boxed();
// This should be true since batch size is u32
debug_assert!(num_rows <= u32::MAX as u64);
let next_task = ReadBatchTask {
task,
num_rows: num_rows as u32,
};
(next_task, slf)
})
});
stream.boxed()
}
}
/// A decoder for single-column encodings of primitive data (this includes fixed size
/// lists of primitive data)
///
/// Physical decoders are able to decode into existing buffers for zero-copy operation.
///
/// Instances should be stateless and `Send` / `Sync`. This is because multiple decode
/// tasks could reference the same page. For example, imagine a page covers rows 0-2000
/// and the decoder stream has a batch size of 1024. The decoder will be needed by both
/// the decode task for batch 0 and the decode task for batch 1.
///
/// See [`crate::decoder`] for more information
pub trait PrimitivePageDecoder: Send + Sync {
/// Decode data into buffers
///
/// This may be a simple zero-copy from a disk buffer or could involve complex decoding
/// such as decompressing from some compressed representation.
///
/// Capacity is stored as a tuple of (num_bytes: u64, is_needed: bool). The `is_needed`
/// portion only needs to be updated if the encoding has some concept of an "optional"
/// buffer.
///
/// Encodings can have any number of input or output buffers. For example, a dictionary
/// decoding will convert two buffers (indices + dictionary) into a single buffer
///
/// Binary decodings have two output buffers (one for values, one for offsets)
///
/// Other decodings could even expand the # of output buffers. For example, we could decode
/// fixed size strings into variable length strings going from one input buffer to multiple output
/// buffers.
///
/// Each Arrow data type typically has a fixed structure of buffers and the encoding chain will
/// generally end at one of these structures. However, intermediate structures may exist which
/// do not correspond to any Arrow type at all. For example, a bitpacking encoding will deal
/// with buffers that have bits-per-value that is not a multiple of 8.
///
/// The `primitive_array_from_buffers` method has an expected buffer layout for each arrow
/// type (order matters) and encodings that aim to decode into arrow types should respect
/// this layout.
/// # Arguments
///
/// * `rows_to_skip` - how many rows to skip (within the page) before decoding
/// * `num_rows` - how many rows to decode
/// * `all_null` - A mutable bool, set to true if a decoder determines all values are null
fn decode(&self, rows_to_skip: u64, num_rows: u64) -> Result<Box<dyn DataBlock>>;
}
/// A scheduler for single-column encodings of primitive data
///
/// The scheduler is responsible for calculating what I/O is needed for the requested rows
///
/// Instances should be stateless and `Send` and `Sync`. This is because instances can
/// be shared in follow-up I/O tasks.
///
/// See [`crate::decoder`] for more information
pub trait PageScheduler: Send + Sync + std::fmt::Debug {
/// Schedules a batch of I/O to load the data needed for the requested ranges
///
/// Returns a future that will yield a decoder once the data has been loaded
///
/// # Arguments
///
/// * `range` - the range of row offsets (relative to start of page) requested
/// these must be ordered and must not overlap
/// * `scheduler` - a scheduler to submit the I/O request to
/// * `top_level_row` - the row offset of the top level field currently being
/// scheduled. This can be used to assign priority to I/O requests
fn schedule_ranges(
&self,
ranges: &[Range<u64>],
scheduler: &Arc<dyn EncodingsIo>,
top_level_row: u64,
) -> BoxFuture<'static, Result<Box<dyn PrimitivePageDecoder>>>;
}
/// Contains the context for a scheduler
pub struct SchedulerContext {
recv: Option<mpsc::UnboundedReceiver<DecoderMessage>>,
io: Arc<dyn EncodingsIo>,
name: String,
path: Vec<u32>,
path_names: Vec<String>,
}
pub struct ScopedSchedulerContext<'a> {
pub context: &'a mut SchedulerContext,
}
impl<'a> ScopedSchedulerContext<'a> {
pub fn pop(self) -> &'a mut SchedulerContext {
self.context.pop();
self.context
}
}
impl SchedulerContext {
pub fn new(io: Arc<dyn EncodingsIo>) -> Self {
Self {
io,
recv: None,
name: "".to_string(),
path: Vec::new(),
path_names: Vec::new(),
}
}
pub fn io(&self) -> &Arc<dyn EncodingsIo> {
&self.io
}
pub fn push(&mut self, name: &str, index: u32) -> ScopedSchedulerContext {
self.path.push(index);
self.path_names.push(name.to_string());
ScopedSchedulerContext { context: self }
}
pub fn pop(&mut self) {
self.path.pop();
self.path_names.pop();
}
pub fn path_name(&self) -> String {
let path = self.path_names.join("/");
if self.recv.is_some() {
format!("TEMP({}){}", self.name, path)
} else {
format!("ROOT{}", path)
}
}
pub fn locate_decoder(&mut self, decoder: Box<dyn LogicalPageDecoder>) -> DecoderReady {
trace!(
"Scheduling decoder of type {:?} for {:?}",
decoder.data_type(),
self.path,
);
DecoderReady {
decoder,
path: VecDeque::from_iter(self.path.iter().copied()),
}
}
}
#[derive(Debug)]
pub struct ScheduledScanLine {
pub rows_scheduled: u64,
pub decoders: Vec<DecoderReady>,
}
pub trait SchedulingJob: std::fmt::Debug {
fn schedule_next(
&mut self,
context: &mut SchedulerContext,
top_level_row: u64,
) -> Result<ScheduledScanLine>;
fn num_rows(&self) -> u64;
}
/// A filter expression to apply to the data
///
/// The core decoders do not currently take advantage of filtering in
/// any way. In order to maintain the abstraction we represent filters
/// as an arbitrary byte sequence.
///
/// We recommend that encodings use Substrait for filters.
pub struct FilterExpression(pub Bytes);
impl FilterExpression {
/// Create a filter expression that does not filter any data
///
/// This is currently represented by an empty byte array. Encoders
/// that are "filter aware" should make sure they handle this case.
pub fn no_filter() -> Self {
Self(Bytes::new())
}
}
/// A scheduler for a field's worth of data
///
/// Each field in a reader's output schema maps to one field scheduler. This scheduler may
/// map to more than one column. For example, one field of struct data may
/// cover many columns of child data. In fact, the entire file is treated as one
/// top-level struct field.
///
/// The scheduler is responsible for calculating the neccesary I/O. One schedule_range
/// request could trigger mulitple batches of I/O across multiple columns. The scheduler
/// should emit decoders into the sink as quickly as possible.
///
/// As soon as the scheduler encounters a batch of data that can decoded then the scheduler
/// should emit a decoder in the "unloaded" state. The decode stream will pull the decoder
/// and start decoding.
///
/// The order in which decoders are emitted is important. Pages should be emitted in
/// row-major order allowing decode of complete rows as quickly as possible.
///
/// The `FieldScheduler` should be stateless and `Send` and `Sync`. This is
/// because it might need to be shared. For example, a list page has a reference to
/// the field schedulers for its items column. This is shared with the follow-up I/O
/// task created when the offsets are loaded.
///
/// See [`crate::decoder`] for more information
pub trait FieldScheduler: Send + Sync + std::fmt::Debug {
/// Schedules I/O for the requested portions of the field.
///
/// Note: `ranges` must be ordered and non-overlapping
/// TODO: Support unordered or overlapping ranges in file scheduler
fn schedule_ranges<'a>(
&'a self,
ranges: &[Range<u64>],
filter: &FilterExpression,
) -> Result<Box<dyn SchedulingJob + 'a>>;
/// The number of rows in this field
fn num_rows(&self) -> u64;
}
/// A trait for tasks that decode data into an Arrow array
pub trait DecodeArrayTask: Send {
/// Decodes the data into an Arrow array
fn decode(self: Box<Self>) -> Result<ArrayRef>;
}
/// A task to decode data into an Arrow array
pub struct NextDecodeTask {
/// The decode task itself
pub task: Box<dyn DecodeArrayTask>,
/// The number of rows that will be created
pub num_rows: u64,
/// Whether or not the decoder that created this still has more rows to decode
pub has_more: bool,
}
#[derive(Debug)]
pub struct DecoderReady {
// The decoder that is ready to be decoded
pub decoder: Box<dyn LogicalPageDecoder>,
// The path to the decoder, the first value is the column index
// following values, if present, are nested child indices
//
// For example, a path of [1, 1, 0] would mean to grab the second
// column, then the second child, and then the first child.
//
// It could represent x in the following schema:
//
// score: float64
// points: struct
// color: string
// location: struct
// x: float64
//
// Currently, only struct decoders have "children" although other
// decoders may at some point as well. List children are only
// handled through indirect I/O at the moment and so they don't
// need to be represented (yet)
pub path: VecDeque<u32>,
}
pub struct DecoderMessage {
pub scheduled_so_far: u64,
pub decoders: Vec<DecoderReady>,
}
pub struct DecoderContext {
source: mpsc::UnboundedReceiver<Result<DecoderMessage>>,
}
impl DecoderContext {
pub fn new(source: mpsc::UnboundedReceiver<Result<DecoderMessage>>) -> Self {
Self { source }
}
}
/// A decoder for a field's worth of data
///
/// The decoder is initially "unloaded" (doesn't have all its data). The [`Self::wait`]
/// method should be called to wait for the needed I/O data before attempting to decode
/// any further.
///
/// Unlike the other decoder types it is assumed that `LogicalPageDecoder` is stateful
/// and only `Send`. This is why we don't need a `rows_to_skip` argument in [`Self::drain`]
pub trait LogicalPageDecoder: std::fmt::Debug + Send {
/// Add a newly scheduled child decoder
///
/// The default implementation does not expect children and returns
/// an error.
fn accept_child(&mut self, _child: DecoderReady) -> Result<()> {
Err(Error::Internal {
message: format!(
"The decoder {:?} does not expect children but received a child",
self
),
location: location!(),
})
}
/// Waits for enough data to be loaded to decode `num_rows` of data
fn wait(&mut self, num_rows: u64) -> BoxFuture<Result<()>>;
/// Creates a task to decode `num_rows` of data into an array
fn drain(&mut self, num_rows: u64) -> Result<NextDecodeTask>;
/// The number of rows that are in the page but haven't yet been "waited"
fn unawaited(&self) -> u64;
/// The number of rows that have been "waited" but not yet decoded
fn avail(&self) -> u64;
/// The data type of the decoded data
fn data_type(&self) -> &DataType;
}
/// Decodes a batch of data from an in-memory structure created by [`crate::encoder::encode_batch`]
pub async fn decode_batch(
batch: &EncodedBatch,
filter: &FilterExpression,
field_decoder_strategy: &DecoderMiddlewareChain,
) -> Result<RecordBatch> {
let io_scheduler = Arc::new(BufferScheduler::new(batch.data.clone())) as Arc<dyn EncodingsIo>;
let mut decode_scheduler = DecodeBatchScheduler::try_new(
batch.schema.as_ref(),
&batch.top_level_columns,
&batch.page_table,
&vec![],
batch.num_rows,
field_decoder_strategy,
&io_scheduler,
)?;
let (tx, rx) = unbounded_channel();
decode_scheduler.schedule_range(0..batch.num_rows, filter, tx, io_scheduler);
#[allow(clippy::single_range_in_vec_init)]
let root_decoder = decode_scheduler.new_root_decoder_ranges(&[0..batch.num_rows]);
let stream = BatchDecodeStream::new(rx, batch.num_rows as u32, batch.num_rows, root_decoder);
stream.into_stream().next().await.unwrap().task.await
}