1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

use std::{
    collections::{BinaryHeap, VecDeque},
    ops::Range,
    sync::Arc,
};

use arrow_array::{cast::AsArray, ArrayRef, StructArray};
use arrow_schema::{DataType, Fields};
use futures::{future::BoxFuture, FutureExt};
use log::trace;
use snafu::{location, Location};

use crate::{
    decoder::{
        DecodeArrayTask, DecoderReady, FieldScheduler, FilterExpression, LogicalPageDecoder,
        NextDecodeTask, ScheduledScanLine, SchedulerContext, SchedulingJob,
    },
    encoder::{EncodeTask, EncodedArray, EncodedColumn, EncodedPage, FieldEncoder},
    format::pb,
};
use lance_core::{Error, Result};

#[derive(Debug)]
struct SchedulingJobWithStatus<'a> {
    col_idx: u32,
    col_name: &'a str,
    job: Box<dyn SchedulingJob + 'a>,
    rows_scheduled: u64,
    rows_remaining: u64,
}

impl<'a> PartialEq for SchedulingJobWithStatus<'a> {
    fn eq(&self, other: &Self) -> bool {
        self.col_idx == other.col_idx
    }
}

impl<'a> Eq for SchedulingJobWithStatus<'a> {}

impl<'a> PartialOrd for SchedulingJobWithStatus<'a> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl<'a> Ord for SchedulingJobWithStatus<'a> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        // Note this is reversed to make it min-heap
        other.rows_scheduled.cmp(&self.rows_scheduled)
    }
}

/// Scheduling job for struct data
///
/// The order in which we schedule the children is important.  We want to schedule the child
/// with the least amount of data first.
///
/// This allows us to decode entire rows as quickly as possible
#[derive(Debug)]
struct SimpleStructSchedulerJob<'a> {
    scheduler: &'a SimpleStructScheduler,
    /// A min-heap whose key is the # of rows currently scheduled
    children: BinaryHeap<SchedulingJobWithStatus<'a>>,
    rows_scheduled: u64,
    num_rows: u64,
    initialized: bool,
}

impl<'a> SimpleStructSchedulerJob<'a> {
    fn new(
        scheduler: &'a SimpleStructScheduler,
        children: Vec<Box<dyn SchedulingJob + 'a>>,
        num_rows: u64,
    ) -> Self {
        let children = children
            .into_iter()
            .enumerate()
            .map(|(idx, job)| SchedulingJobWithStatus {
                col_idx: idx as u32,
                col_name: scheduler.child_fields[idx].name(),
                job,
                rows_scheduled: 0,
                rows_remaining: num_rows,
            })
            .collect::<BinaryHeap<_>>();
        Self {
            scheduler,
            children,
            rows_scheduled: 0,
            num_rows,
            initialized: false,
        }
    }
}

impl<'a> SchedulingJob for SimpleStructSchedulerJob<'a> {
    fn schedule_next(
        &mut self,
        mut context: &mut SchedulerContext,
        top_level_row: u64,
    ) -> Result<ScheduledScanLine> {
        let mut decoders = Vec::new();
        if !self.initialized {
            // Send info to the decoder thread so it knows a struct is here.  In the future we will also
            // send validity info here.
            let struct_decoder = Box::new(SimpleStructDecoder::new(
                self.scheduler.child_fields.clone(),
                self.num_rows,
            ));
            let struct_decoder = context.locate_decoder(struct_decoder);
            decoders.push(struct_decoder);
            self.initialized = true;
        }
        let old_rows_scheduled = self.rows_scheduled;
        // Schedule as many children as we need to until we have scheduled at least one
        // complete row
        while old_rows_scheduled == self.rows_scheduled {
            let mut next_child = self.children.pop().unwrap();
            trace!("Scheduling more rows for child {}", next_child.col_idx);
            let scoped = context.push(next_child.col_name, next_child.col_idx);
            let child_scan = next_child
                .job
                .schedule_next(scoped.context, top_level_row)?;
            trace!(
                "Scheduled {} rows for child {}",
                child_scan.rows_scheduled,
                next_child.col_idx
            );
            next_child.rows_scheduled += child_scan.rows_scheduled;
            next_child.rows_remaining -= child_scan.rows_scheduled;
            decoders.extend(child_scan.decoders);
            self.children.push(next_child);
            self.rows_scheduled = self.children.peek().unwrap().rows_scheduled;
            context = scoped.pop();
        }
        let struct_rows_scheduled = self.rows_scheduled - old_rows_scheduled;
        Ok(ScheduledScanLine {
            decoders,
            rows_scheduled: struct_rows_scheduled,
        })
    }

    fn num_rows(&self) -> u64 {
        self.num_rows
    }
}

/// A scheduler for structs
///
/// The implementation is actually a bit more tricky than one might initially think.  We can't just
/// go through and schedule each column one after the other.  This would mean our decode can't start
/// until nearly all the data has arrived (since we need data from each column)
///
/// Instead, we schedule in row-major fashion
///
/// Note: this scheduler is the starting point for all decoding.  This is because we treat the top-level
/// record batch as a non-nullable struct.
#[derive(Debug)]
pub struct SimpleStructScheduler {
    children: Vec<Arc<dyn FieldScheduler>>,
    child_fields: Fields,
    num_rows: u64,
}

impl SimpleStructScheduler {
    pub fn new(children: Vec<Arc<dyn FieldScheduler>>, child_fields: Fields) -> Self {
        debug_assert!(!children.is_empty());
        let num_rows = children[0].num_rows();
        debug_assert!(children.iter().all(|child| child.num_rows() == num_rows));
        Self {
            children,
            child_fields,
            num_rows,
        }
    }
}

impl FieldScheduler for SimpleStructScheduler {
    fn schedule_ranges<'a>(
        &'a self,
        ranges: &[Range<u64>],
        filter: &FilterExpression,
    ) -> Result<Box<dyn SchedulingJob + 'a>> {
        let child_schedulers = self
            .children
            .iter()
            .map(|child| child.schedule_ranges(ranges, filter))
            .collect::<Result<Vec<_>>>()?;
        let num_rows = child_schedulers[0].num_rows();
        Ok(Box::new(SimpleStructSchedulerJob::new(
            self,
            child_schedulers,
            num_rows,
        )))
    }

    fn num_rows(&self) -> u64 {
        self.num_rows
    }
}

#[derive(Debug)]
struct ChildState {
    // As child decoders are scheduled they are added to this queue
    // Once the decoder is fully drained it is popped from this queue
    //
    // TODO: It may be a minor perf optimization, in some rare cases, if we have a separate
    // "fully awaited but not yet drained" queue so we don't loop through fully awaited pages
    // during each call to wait.
    //
    // Note: This queue may have more than one page in it if the batch size is very large
    // or pages are very small
    // TODO: Test this case
    scheduled: VecDeque<Box<dyn LogicalPageDecoder>>,
    // Rows that should still be coming over the channel source but haven't yet been
    // put into the awaited queue
    rows_unawaited: u64,
    // Rows that have been pulled out of the channel source, awaited, and are ready to
    // be drained
    rows_available: u64,
    // The field index in the struct (used for debugging / logging)
    field_index: u32,
}

struct CompositeDecodeTask {
    // One per child
    tasks: Vec<Box<dyn DecodeArrayTask>>,
    num_rows: u64,
    has_more: bool,
}

impl CompositeDecodeTask {
    fn decode(self) -> Result<ArrayRef> {
        let arrays = self
            .tasks
            .into_iter()
            .map(|task| task.decode())
            .collect::<Result<Vec<_>>>()?;
        let array_refs = arrays.iter().map(|arr| arr.as_ref()).collect::<Vec<_>>();
        // TODO: If this is a primitive column we should be able to avoid this
        // allocation + copy with "page bridging" which could save us a few CPU
        // cycles.
        //
        // This optimization is probably most important for super fast storage like NVME
        // where the page size can be smaller.
        Ok(arrow_select::concat::concat(&array_refs)?)
    }
}

impl ChildState {
    fn new(num_rows: u64, field_index: u32) -> Self {
        Self {
            scheduled: VecDeque::new(),
            rows_unawaited: num_rows,
            rows_available: 0,
            field_index,
        }
    }

    // Wait for the next set of rows to arrive.
    async fn wait(&mut self, num_rows: u64) -> Result<()> {
        trace!(
            "Struct child {} waiting for {} rows and {} are available already",
            self.field_index,
            num_rows,
            self.rows_available
        );
        let mut remaining = num_rows.saturating_sub(self.rows_available);
        for next_decoder in &mut self.scheduled {
            if next_decoder.unawaited() > 0 {
                let rows_to_wait = remaining.min(next_decoder.unawaited());
                trace!(
                    "Struct await an additional {} rows from the current page",
                    rows_to_wait
                );
                // Even though we wait for X rows we might actually end up
                // loading more than that
                let previously_avail = next_decoder.avail();
                // We might only await part of a page.  This is important for things
                // like the struct<struct<...>> case where we have one outer page, one
                // middle page, and then a bunch of inner pages.  If we await the entire
                // middle page then we will have to wait for all the inner pages to arrive
                // before we can start decoding.
                next_decoder.wait(rows_to_wait).await?;
                let newly_avail = next_decoder.avail() - previously_avail;
                trace!("The await loaded {} rows", newly_avail);
                self.rows_available += newly_avail;
                // Need to use saturating_sub here because we might have asked for range
                // 0-1000 and this page we just loaded might cover 900-1100 and so newly_avail
                // is 200 but rows_unawaited is only 100
                //
                // TODO: Unit tests may not be covering this branch right now
                self.rows_unawaited = self.rows_unawaited.saturating_sub(newly_avail);
                remaining -= rows_to_wait;
                if remaining == 0 {
                    break;
                }
            }
        }
        if remaining > 0 {
            Err(Error::Internal { message: format!("The struct field at index {} is still waiting for {} rows but ran out of scheduled pages", self.field_index, remaining), location: location!() })
        } else {
            Ok(())
        }
    }

    fn drain(&mut self, num_rows: u64) -> Result<CompositeDecodeTask> {
        trace!("Struct draining {} rows", num_rows);
        debug_assert!(self.rows_available >= num_rows);

        self.rows_available -= num_rows;
        let mut remaining = num_rows;
        let mut composite = CompositeDecodeTask {
            tasks: Vec::new(),
            num_rows: 0,
            has_more: true,
        };
        while remaining > 0 {
            let next = self.scheduled.front_mut().unwrap();
            let rows_to_take = remaining.min(next.avail());
            let next_task = next.drain(rows_to_take)?;
            if next.avail() == 0 && next.unawaited() == 0 {
                trace!("Completely drained page");
                self.scheduled.pop_front();
            }
            remaining -= rows_to_take;
            composite.tasks.push(next_task.task);
            composite.num_rows += next_task.num_rows;
        }
        composite.has_more = self.rows_available != 0 || self.rows_unawaited != 0;
        Ok(composite)
    }
}

#[derive(Debug)]
pub struct SimpleStructDecoder {
    children: Vec<ChildState>,
    child_fields: Fields,
    data_type: DataType,
}

impl SimpleStructDecoder {
    pub fn new(child_fields: Fields, num_rows: u64) -> Self {
        let data_type = DataType::Struct(child_fields.clone());
        Self {
            children: child_fields
                .iter()
                .enumerate()
                .map(|(idx, _)| ChildState::new(num_rows, idx as u32))
                .collect(),
            child_fields,
            data_type,
        }
    }
}

impl LogicalPageDecoder for SimpleStructDecoder {
    fn accept_child(&mut self, mut child: DecoderReady) -> Result<()> {
        // children with empty path should not be delivered to this method
        let child_idx = child.path.pop_front().unwrap();
        if child.path.is_empty() {
            // This decoder is intended for us
            self.children[child_idx as usize]
                .scheduled
                .push_back(child.decoder);
        } else {
            // This decoder is intended for one of our children
            let intended = self.children[child_idx as usize].scheduled.back_mut().ok_or_else(|| Error::Internal { message: format!("Decoder scheduled for child at index {} but we don't have any child at that index yet", child_idx), location: location!() })?;
            intended.accept_child(child)?;
        }
        Ok(())
    }

    fn wait(&mut self, num_rows: u64) -> BoxFuture<Result<()>> {
        async move {
            for child in self.children.iter_mut() {
                child.wait(num_rows).await?;
            }
            Ok(())
        }
        .boxed()
    }

    fn drain(&mut self, num_rows: u64) -> Result<NextDecodeTask> {
        let child_tasks = self
            .children
            .iter_mut()
            .map(|child| child.drain(num_rows))
            .collect::<Result<Vec<_>>>()?;
        let num_rows = child_tasks[0].num_rows;
        let has_more = child_tasks[0].has_more;
        debug_assert!(child_tasks.iter().all(|task| task.num_rows == num_rows));
        debug_assert!(child_tasks.iter().all(|task| task.has_more == has_more));
        Ok(NextDecodeTask {
            task: Box::new(SimpleStructDecodeTask {
                children: child_tasks,
                child_fields: self.child_fields.clone(),
            }),
            num_rows,
            has_more,
        })
    }

    // Rows are available only if they are available in every child column
    fn avail(&self) -> u64 {
        self.children
            .iter()
            .map(|c| c.rows_available)
            .min()
            .unwrap()
    }

    // Rows are unawaited if they are unawaited in any child column
    fn unawaited(&self) -> u64 {
        self.children
            .iter()
            .map(|c| c.rows_unawaited)
            .max()
            .unwrap()
    }

    fn data_type(&self) -> &DataType {
        &self.data_type
    }
}

struct SimpleStructDecodeTask {
    children: Vec<CompositeDecodeTask>,
    child_fields: Fields,
}

impl DecodeArrayTask for SimpleStructDecodeTask {
    fn decode(self: Box<Self>) -> Result<ArrayRef> {
        let child_arrays = self
            .children
            .into_iter()
            .map(|child| child.decode())
            .collect::<Result<Vec<_>>>()?;
        Ok(Arc::new(StructArray::try_new(
            self.child_fields,
            child_arrays,
            None,
        )?))
    }
}

pub struct StructFieldEncoder {
    children: Vec<Box<dyn FieldEncoder>>,
    column_index: u32,
    num_rows_seen: u64,
}

impl StructFieldEncoder {
    #[allow(dead_code)]
    pub fn new(children: Vec<Box<dyn FieldEncoder>>, column_index: u32) -> Self {
        Self {
            children,
            column_index,
            num_rows_seen: 0,
        }
    }
}

impl FieldEncoder for StructFieldEncoder {
    fn maybe_encode(&mut self, array: ArrayRef) -> Result<Vec<EncodeTask>> {
        self.num_rows_seen += array.len() as u64;
        let struct_array = array.as_struct();
        let child_tasks = self
            .children
            .iter_mut()
            .zip(struct_array.columns().iter())
            .map(|(encoder, arr)| encoder.maybe_encode(arr.clone()))
            .collect::<Result<Vec<_>>>()?;
        Ok(child_tasks.into_iter().flatten().collect::<Vec<_>>())
    }

    fn flush(&mut self) -> Result<Vec<EncodeTask>> {
        let child_tasks = self
            .children
            .iter_mut()
            .map(|encoder| encoder.flush())
            .collect::<Result<Vec<_>>>()?;
        let mut child_tasks = child_tasks.into_iter().flatten().collect::<Vec<_>>();
        let num_rows_seen = self.num_rows_seen;
        let column_index = self.column_index;
        // In this "simple struct / no nulls" case we emit a single header page at
        // the very end which covers the entire struct.
        child_tasks.push(
            std::future::ready(Ok(EncodedPage {
                array: EncodedArray {
                    buffers: vec![],
                    encoding: pb::ArrayEncoding {
                        array_encoding: Some(pb::array_encoding::ArrayEncoding::Struct(
                            pb::SimpleStruct {},
                        )),
                    },
                },
                num_rows: num_rows_seen,
                column_idx: column_index,
            }))
            .boxed(),
        );
        Ok(child_tasks)
    }

    fn num_columns(&self) -> u32 {
        self.children
            .iter()
            .map(|child| child.num_columns())
            .sum::<u32>()
            + 1
    }

    fn finish(&mut self) -> BoxFuture<'_, Result<Vec<crate::encoder::EncodedColumn>>> {
        async move {
            let mut columns = Vec::new();
            // Add a column for the struct header
            columns.push(EncodedColumn::default());
            for child in self.children.iter_mut() {
                columns.extend(child.finish().await?);
            }
            Ok(columns)
        }
        .boxed()
    }
}

#[cfg(test)]
mod tests {

    use std::sync::Arc;

    use arrow_array::{
        builder::{Int32Builder, ListBuilder},
        Array, ArrayRef, Int32Array, StructArray,
    };
    use arrow_schema::{DataType, Field, Fields};

    use crate::testing::{
        check_round_trip_encoding_of_data, check_round_trip_encoding_random, TestCases,
    };

    #[test_log::test(tokio::test)]
    async fn test_simple_struct() {
        let data_type = DataType::Struct(Fields::from(vec![
            Field::new("a", DataType::Int32, false),
            Field::new("b", DataType::Int32, false),
        ]));
        let field = Field::new("", data_type, false);
        check_round_trip_encoding_random(field).await;
    }

    #[test_log::test(tokio::test)]
    async fn test_struct_list() {
        let data_type = DataType::Struct(Fields::from(vec![
            Field::new(
                "inner_list",
                DataType::List(Arc::new(Field::new("item", DataType::Int32, true))),
                true,
            ),
            Field::new("outer_int", DataType::Int32, true),
        ]));
        let field = Field::new("row", data_type, false);
        check_round_trip_encoding_random(field).await;
    }

    #[test_log::test(tokio::test)]
    async fn test_complicated_struct() {
        let data_type = DataType::Struct(Fields::from(vec![
            Field::new("int", DataType::Int32, true),
            Field::new(
                "inner",
                DataType::Struct(Fields::from(vec![
                    Field::new("inner_int", DataType::Int32, true),
                    Field::new(
                        "inner_list",
                        DataType::List(Arc::new(Field::new("item", DataType::Int32, true))),
                        true,
                    ),
                ])),
                true,
            ),
            Field::new("outer_binary", DataType::Binary, true),
        ]));
        let field = Field::new("row", data_type, false);
        check_round_trip_encoding_random(field).await;
    }

    #[test_log::test(tokio::test)]
    async fn test_ragged_scheduling() {
        // This test covers scheduling when batches straddle page boundaries

        // Create a list with 10k nulls
        let items_builder = Int32Builder::new();
        let mut list_builder = ListBuilder::new(items_builder);
        for _ in 0..10000 {
            list_builder.append_null();
        }
        let list_array = Arc::new(list_builder.finish());
        let int_array = Arc::new(Int32Array::from_iter_values(0..10000));
        let fields = vec![
            Field::new("", list_array.data_type().clone(), true),
            Field::new("", int_array.data_type().clone(), true),
        ];
        let struct_array = Arc::new(StructArray::new(
            Fields::from(fields),
            vec![list_array, int_array],
            None,
        )) as ArrayRef;
        let struct_arrays = (0..10000)
            // Intentionally skip in some randomish amount to create more ragged scheduling
            .step_by(437)
            .map(|offset| struct_array.slice(offset, 437.min(10000 - offset)))
            .collect::<Vec<_>>();
        check_round_trip_encoding_of_data(struct_arrays, &TestCases::default()).await;
    }
}