1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

use arrow_array::ArrayRef;
use arrow_schema::DataType;
use bytes::Bytes;
use futures::{future::BoxFuture, FutureExt};
use lance_arrow::DataTypeExt;
use log::trace;
use snafu::{location, Location};
use std::fmt;
use std::ops::Range;
use std::sync::{Arc, Mutex};

use crate::{
    decoder::{PhysicalPageDecoder, PhysicalPageScheduler},
    encoder::{ArrayEncoder, BufferEncoder, EncodedArray, EncodedArrayBuffer},
    format::pb,
    EncodingsIo,
};

use lance_core::{Error, Result};

use super::buffers::{
    BitmapBufferEncoder, CompressedBufferEncoder, FlatBufferEncoder, GeneralBufferCompressor,
};

#[derive(Debug, Clone, Copy, PartialEq)]
pub enum CompressionScheme {
    None,
    Zstd,
}

impl fmt::Display for CompressionScheme {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let scheme_str = match self {
            Self::Zstd => "zstd",
            Self::None => "none",
        };
        write!(f, "{}", scheme_str)
    }
}

pub fn parse_compression_scheme(scheme: &str) -> Result<CompressionScheme> {
    match scheme {
        "none" => Ok(CompressionScheme::None),
        "zstd" => Ok(CompressionScheme::Zstd),
        _ => Err(Error::invalid_input(
            format!("Unknown compression scheme: {}", scheme),
            location!(),
        )),
    }
}

/// Scheduler for a simple encoding where buffers of fixed-size items are stored as-is on disk
#[derive(Debug, Clone, Copy)]
pub struct ValuePageScheduler {
    // TODO: do we really support values greater than 2^32 bytes per value?
    // I think we want to, in theory, but will need to test this case.
    bytes_per_value: u64,
    buffer_offset: u64,
    buffer_size: u64,
    compression_scheme: CompressionScheme,
}

impl ValuePageScheduler {
    pub fn new(
        bytes_per_value: u64,
        buffer_offset: u64,
        buffer_size: u64,
        compression_scheme: CompressionScheme,
    ) -> Self {
        Self {
            bytes_per_value,
            buffer_offset,
            buffer_size,
            compression_scheme,
        }
    }
}

impl PhysicalPageScheduler for ValuePageScheduler {
    fn schedule_ranges(
        &self,
        ranges: &[std::ops::Range<u32>],
        scheduler: &dyn EncodingsIo,
        top_level_row: u64,
    ) -> BoxFuture<'static, Result<Box<dyn PhysicalPageDecoder>>> {
        let (mut min, mut max) = (u64::MAX, 0);
        let byte_ranges = if self.compression_scheme == CompressionScheme::None {
            ranges
                .iter()
                .map(|range| {
                    let start = self.buffer_offset + (range.start as u64 * self.bytes_per_value);
                    let end = self.buffer_offset + (range.end as u64 * self.bytes_per_value);
                    min = min.min(start);
                    max = max.max(end);
                    start..end
                })
                .collect::<Vec<_>>()
        } else {
            min = self.buffer_offset;
            max = self.buffer_offset + self.buffer_size;
            // for compressed page, the ranges are always the entire page,
            // and it is guaranteed that only one range is passed
            vec![Range {
                start: min,
                end: max,
            }]
        };

        trace!(
            "Scheduling I/O for {} ranges spread across byte range {}..{}",
            byte_ranges.len(),
            min,
            max
        );
        let bytes = scheduler.submit_request(byte_ranges, top_level_row);
        let bytes_per_value = self.bytes_per_value;

        let range_offsets = if self.compression_scheme != CompressionScheme::None {
            ranges
                .iter()
                .map(|range| {
                    let start = (range.start as u64 * bytes_per_value) as usize;
                    let end = (range.end as u64 * bytes_per_value) as usize;
                    start..end
                })
                .collect::<Vec<_>>()
        } else {
            vec![]
        };

        async move {
            let bytes = bytes.await?;

            Ok(Box::new(ValuePageDecoder {
                bytes_per_value,
                data: bytes,
                uncompressed_data: Arc::new(Mutex::new(None)),
                uncompressed_range_offsets: range_offsets,
            }) as Box<dyn PhysicalPageDecoder>)
        }
        .boxed()
    }
}

struct ValuePageDecoder {
    bytes_per_value: u64,
    data: Vec<Bytes>,
    uncompressed_data: Arc<Mutex<Option<Vec<Bytes>>>>,
    uncompressed_range_offsets: Vec<std::ops::Range<usize>>,
}

impl ValuePageDecoder {
    fn decompress(&self) -> Result<Vec<Bytes>> {
        // for compressed page, it is guaranteed that only one range is passed
        let bytes_u8: Vec<u8> = self.data[0].to_vec();
        let buffer_compressor = GeneralBufferCompressor::get_compressor("");
        let mut uncompressed_bytes: Vec<u8> = Vec::new();
        buffer_compressor.decompress(&bytes_u8, &mut uncompressed_bytes)?;

        let mut bytes_in_ranges: Vec<Bytes> =
            Vec::with_capacity(self.uncompressed_range_offsets.len());
        for range in &self.uncompressed_range_offsets {
            let start = range.start;
            let end = range.end;
            bytes_in_ranges.push(Bytes::from(uncompressed_bytes[start..end].to_vec()));
        }
        Ok(bytes_in_ranges)
    }

    fn get_uncompressed_bytes(&self) -> Result<Arc<Mutex<Option<Vec<Bytes>>>>> {
        let mut uncompressed_bytes = self.uncompressed_data.lock().unwrap();
        if uncompressed_bytes.is_none() {
            *uncompressed_bytes = Some(self.decompress()?);
        }
        Ok(Arc::clone(&self.uncompressed_data))
    }

    fn is_compressed(&self) -> bool {
        !self.uncompressed_range_offsets.is_empty()
    }

    fn decode_buffer(
        &self,
        buf: &Bytes,
        bytes_to_skip: &mut u64,
        bytes_to_take: &mut u64,
        dest: &mut bytes::BytesMut,
    ) {
        let buf_len = buf.len() as u64;
        if *bytes_to_skip > buf_len {
            *bytes_to_skip -= buf_len;
        } else {
            let bytes_to_take_here = (buf_len - *bytes_to_skip).min(*bytes_to_take);
            *bytes_to_take -= bytes_to_take_here;
            let start = *bytes_to_skip as usize;
            let end = start + bytes_to_take_here as usize;
            dest.extend_from_slice(&buf.slice(start..end));
            *bytes_to_skip = 0;
        }
    }
}

impl PhysicalPageDecoder for ValuePageDecoder {
    fn update_capacity(
        &self,
        _rows_to_skip: u32,
        num_rows: u32,
        buffers: &mut [(u64, bool)],
        _all_null: &mut bool,
    ) {
        buffers[0].0 = self.bytes_per_value * num_rows as u64;
        buffers[0].1 = true;
    }

    fn decode_into(
        &self,
        rows_to_skip: u32,
        num_rows: u32,
        dest_buffers: &mut [bytes::BytesMut],
    ) -> Result<()> {
        let mut bytes_to_skip = rows_to_skip as u64 * self.bytes_per_value;
        let mut bytes_to_take = num_rows as u64 * self.bytes_per_value;

        let dest = &mut dest_buffers[0];

        debug_assert!(dest.capacity() as u64 >= bytes_to_take);

        if self.is_compressed() {
            let decoding_data = self.get_uncompressed_bytes()?;
            for buf in decoding_data.lock().unwrap().as_ref().unwrap() {
                self.decode_buffer(buf, &mut bytes_to_skip, &mut bytes_to_take, dest);
            }
        } else {
            for buf in &self.data {
                self.decode_buffer(buf, &mut bytes_to_skip, &mut bytes_to_take, dest);
            }
        }
        Ok(())
    }

    fn num_buffers(&self) -> u32 {
        1
    }
}

#[derive(Debug)]
pub struct ValueEncoder {
    buffer_encoder: Box<dyn BufferEncoder>,
    compression_scheme: CompressionScheme,
}

impl ValueEncoder {
    pub fn try_new(data_type: &DataType, compression_scheme: CompressionScheme) -> Result<Self> {
        if *data_type == DataType::Boolean {
            Ok(Self {
                buffer_encoder: Box::<BitmapBufferEncoder>::default(),
                compression_scheme,
            })
        } else if data_type.is_fixed_stride() {
            Ok(Self {
                buffer_encoder: if compression_scheme != CompressionScheme::None {
                    Box::<CompressedBufferEncoder>::default()
                } else {
                    Box::<FlatBufferEncoder>::default()
                },
                compression_scheme,
            })
        } else {
            Err(Error::invalid_input(
                format!("Cannot use ValueEncoder to encode {}", data_type),
                location!(),
            ))
        }
    }
}

impl ArrayEncoder for ValueEncoder {
    fn encode(&self, arrays: &[ArrayRef], buffer_index: &mut u32) -> Result<EncodedArray> {
        let index = *buffer_index;
        *buffer_index += 1;

        let encoded_buffer = self.buffer_encoder.encode(arrays)?;
        let array_bufs = vec![EncodedArrayBuffer {
            parts: encoded_buffer.parts,
            index,
        }];

        let data_type = arrays[0].data_type();
        let bits_per_value = match data_type {
            DataType::Boolean => 1,
            _ => 8 * data_type.byte_width() as u64,
        };
        let flat_encoding = pb::ArrayEncoding {
            array_encoding: Some(pb::array_encoding::ArrayEncoding::Flat(pb::Flat {
                bits_per_value,
                buffer: Some(pb::Buffer {
                    buffer_index: index,
                    buffer_type: pb::buffer::BufferType::Page as i32,
                }),
                compression: if self.compression_scheme != CompressionScheme::None {
                    Some(pb::Compression {
                        scheme: self.compression_scheme.to_string(),
                    })
                } else {
                    None
                },
            })),
        };

        Ok(EncodedArray {
            buffers: array_bufs,
            encoding: flat_encoding,
        })
    }
}

// public tests module because we share the PRIMITIVE_TYPES constant with fixed_size_list
#[cfg(test)]
pub(crate) mod tests {
    use arrow_schema::{DataType, Field, TimeUnit};

    use crate::testing::check_round_trip_encoding_random;

    const PRIMITIVE_TYPES: &[DataType] = &[
        DataType::FixedSizeBinary(2),
        DataType::Date32,
        DataType::Date64,
        DataType::Int8,
        DataType::Int16,
        DataType::Int32,
        DataType::Int64,
        DataType::UInt8,
        DataType::UInt16,
        DataType::UInt32,
        DataType::UInt64,
        DataType::Float16,
        DataType::Float32,
        DataType::Float64,
        DataType::Decimal128(10, 10),
        DataType::Decimal256(10, 10),
        DataType::Timestamp(TimeUnit::Nanosecond, None),
        DataType::Time32(TimeUnit::Second),
        DataType::Time64(TimeUnit::Nanosecond),
        DataType::Duration(TimeUnit::Second),
        // The Interval type is supported by the reader but the writer works with Lance schema
        // at the moment and Lance schema can't parse interval
        // DataType::Interval(IntervalUnit::DayTime),
    ];

    #[test_log::test(tokio::test)]
    async fn test_value_primitive() {
        for data_type in PRIMITIVE_TYPES {
            let field = Field::new("", data_type.clone(), false);
            check_round_trip_encoding_random(field).await;
        }
    }
}