1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors
use std::{collections::VecDeque, ops::Range, sync::Arc};
use arrow_array::{
cast::AsArray,
new_empty_array,
types::{Int32Type, Int64Type, UInt64Type},
Array, ArrayRef, BooleanArray, Int32Array, Int64Array, LargeListArray, ListArray, UInt64Array,
};
use arrow_buffer::{BooleanBuffer, BooleanBufferBuilder, Buffer, NullBuffer, OffsetBuffer};
use arrow_schema::{DataType, Field, Fields};
use futures::{future::BoxFuture, FutureExt};
use log::trace;
use snafu::{location, Location};
use tokio::task::JoinHandle;
use lance_core::{Error, Result};
use crate::{
decoder::{
DecodeArrayTask, DecoderMessage, LogicalPageDecoder, LogicalPageScheduler, NextDecodeTask,
SchedulerContext,
},
encoder::{ArrayEncoder, EncodeTask, EncodedArray, EncodedPage, FieldEncoder},
encodings::{
logical::r#struct::SimpleStructScheduler,
physical::{
basic::BasicEncoder,
value::{CompressionScheme, ValueEncoder},
},
},
format::pb,
};
use super::{primitive::AccumulationQueue, r#struct::SimpleStructDecoder};
/// A page scheduler for list fields that encodes offsets in one field and items in another
///
/// The list scheduler is somewhat unique because it requires indirect I/O. We cannot know the
/// ranges we need simply by looking at the metadata. This means that list scheduling doesn't
/// fit neatly into the two-thread schedule-loop / decode-loop model. To handle this, when a
/// list page is scheduled, we only schedule the I/O for the offsets and then we immediately
/// launch a new tokio task. This new task waits for the offsets, decodes them, and then
/// schedules the I/O for the items. Keep in mind that list items can be lists themselves. If
/// that is the case then this indirection will continue. The decode task that is returned will
/// only finish `wait`ing when all of the I/O has completed.
///
/// Whenever we schedule follow-up I/O like this the priority is based on the top-level row
/// index. This helps ensure that earlier rows get finished completely (including follow up
/// tasks) before we perform I/O for later rows.
#[derive(Debug)]
pub struct ListPageScheduler {
offsets_scheduler: Arc<dyn LogicalPageScheduler>,
items_schedulers: Arc<Vec<Arc<dyn LogicalPageScheduler>>>,
items_type: DataType,
offset_type: DataType,
null_offset_adjustment: u64,
// Two list pages might share an items page. For example, when given a List<Struct<...>>
// the struct items page is often very large (if there are no nulls in the struct it will
// be 1 giant page) since it is just a header page. This means the second list page starts
// at some offset into the items page which we record here.
first_items_page_offset: u32,
}
impl ListPageScheduler {
// Create a new ListPageScheduler
pub fn new(
offsets_scheduler: Arc<dyn LogicalPageScheduler>,
items_schedulers: Vec<Arc<dyn LogicalPageScheduler>>,
items_type: DataType,
// Should be int32 or int64
offset_type: DataType,
null_offset_adjustment: u64,
first_items_page_offset: u32,
) -> Self {
match &offset_type {
DataType::Int32 | DataType::Int64 => {}
_ => panic!(),
}
Self {
offsets_scheduler,
items_schedulers: Arc::new(items_schedulers),
items_type,
offset_type,
null_offset_adjustment,
first_items_page_offset,
}
}
/// Given a list of offsets and a list of requested item ranges we need to rewrite the offsets so that
/// they appear as expected for a list array. This involves a number of tasks:
///
/// * Nulls in the offsets are represented by oversize values and these need to be converted to
/// the appropriate length
/// * For each range we (usually) load N + 1 offsets, so if we have 5 ranges we have 5 extra values
/// and we need to drop 4 of those.
/// * Ranges may not start at 0 and, while we don't strictly need to, we want to go ahead and normalize
/// the offsets so that the first offset is 0.
///
/// Throughout the comments we will consider the following example case:
///
/// The user requests the following ranges of lists: [0..3, 5..6]
///
/// This is a total of 4 lists. The loaded offsets are [10, 20, 120, 150, 60]. The last valid offset is 99.
/// The null_offset_adjustment will be 100.
///
/// Our desired output offsets are going to be [0, 10, 20, 20, 30] and the item ranges are [0..20] and [50..60]
/// The validity array is [true, true, false, true]
fn decode_offsets(
offsets: &dyn Array,
offset_ranges: &[Range<u32>],
null_offset_adjustment: u64,
) -> (VecDeque<Range<u64>>, Vec<u64>, BooleanBuffer) {
// In our example this is [10, 20, 120, 50, 60]
let numeric_offsets = offsets.as_primitive::<UInt64Type>();
// In our example there are 4 total lists
let total_num_lists = offset_ranges
.iter()
.map(|range| range.end - range.start)
.sum::<u32>();
let mut normalized_offsets = Vec::with_capacity(total_num_lists as usize);
let mut validity_buffer = BooleanBufferBuilder::new(total_num_lists as usize);
// The first output offset is always 0 no matter what
normalized_offsets.push(0);
let mut last_normalized_offset = 0;
let offsets_values = numeric_offsets.values();
let mut item_ranges = VecDeque::new();
let mut offsets_offset: u32 = 0;
// Only the first range is allowed to start with 0
debug_assert!(offset_ranges.iter().skip(1).all(|r| r.start > 0));
// All ranges should be non-empty
debug_assert!(offset_ranges.iter().all(|r| r.end > r.start));
for range in offset_ranges {
// The # of lists in this particular range
let num_lists = range.end - range.start;
// Because we know the first offset is always 0 we don't store that. This means we have special
// logic if a range starts at 0 (we didn't need to read an extra offset value in that case)
// In our example we enter this special case on the first range (0..3) but not the second (5..6)
// This means the first range, which has 3 lists, maps to 3 values in our offsets array [10, 20, 120]
// However, the second range, which has 1 list, maps to 2 values in our offsets array [150, 60]
let (items_range, offsets_to_norm_start, num_offsets_to_norm) = if range.start == 0 {
// In our example items start is 0 and items_end is 20
let first_offset_idx = 0_usize;
let num_offsets = num_lists as usize;
let items_start = 0;
let items_end = offsets_values[num_offsets - 1] % null_offset_adjustment;
let items_range = items_start..items_end;
(items_range, first_offset_idx, num_offsets)
} else {
// In our example, offsets_offset will be 3, items_start will be 50, and items_end will
// be 60
let first_offset_idx = offsets_offset as usize;
let num_offsets = num_lists as usize + 1;
let items_start = offsets_values[first_offset_idx] % null_offset_adjustment;
let items_end =
offsets_values[first_offset_idx + num_offsets - 1] % null_offset_adjustment;
let items_range = items_start..items_end;
(items_range, first_offset_idx, num_offsets)
};
// TODO: Maybe consider writing whether there are nulls or not as part of the
// page description. Then we can skip all validity work. Not clear if that will
// be any benefit though.
// We calculate validity from all elements but the first (or all elements
// if this is the special zero-start case)
//
// So, in our first pass through, we consider [10, 20, 120] (1 null)
// In our second pass through we only consider [60] (0 nulls)
// Note that the 150 is null but we only loaded it to know where the 50-60 list started
// and it doesn't actually correspond to a list (e.g. list 4 is null but we aren't loading it
// here)
let validity_start = if range.start == 0 {
0
} else {
offsets_to_norm_start + 1
};
for off in offsets_values
.slice(validity_start, num_lists as usize)
.iter()
{
validity_buffer.append(*off < null_offset_adjustment);
}
// In our special case we need to account for the offset 0-first_item
if range.start == 0 {
let first_item = offsets_values[0] % null_offset_adjustment;
normalized_offsets.push(first_item);
last_normalized_offset = first_item;
}
// Finally, we go through and shift the offsets. If we just returned them as is (taking care of
// nulls) we would get [0, 10, 20, 20, 60] but our last list only has 10 items, not 40 and so we
// need to shift that 60 to a 40.
normalized_offsets.extend(
offsets_values
.slice(offsets_to_norm_start, num_offsets_to_norm)
.windows(2)
.map(|w| {
let start = w[0] % null_offset_adjustment;
let end = w[1] % null_offset_adjustment;
if end < start {
panic!("End is less than start in window {:?} with null_offset_adjustment={} we get start={} and end={}", w, null_offset_adjustment, start, end);
}
let length = end - start;
last_normalized_offset += length;
last_normalized_offset
}),
);
trace!(
"List offsets range of {:?} maps to item range {:?}",
range,
items_range
);
offsets_offset += num_offsets_to_norm as u32;
if !items_range.is_empty() {
item_ranges.push_back(items_range);
}
}
let validity = validity_buffer.finish();
(item_ranges, normalized_offsets, validity)
}
}
impl LogicalPageScheduler for ListPageScheduler {
fn schedule_ranges(
&self,
ranges: &[std::ops::Range<u32>],
context: &mut SchedulerContext,
top_level_row: u64,
) -> Result<()> {
// TODO: Shortcut here if the request covers the entire range (can be determined by
// the first_invalid_offset). If this is the case we don't need any indirect I/O. We
// know we need the entirety of the list items.
let num_rows = ranges.iter().map(|range| range.end - range.start).sum();
// TODO: Should coalesce here (e.g. if receiving take(&[0, 1, 2]))
// otherwise we are double-dipping on the offsets scheduling
let offsets_ranges = ranges
.iter()
.map(|range| {
if range.start == 0 {
// If the start is 0 then we don't need to read an extra value because we know
// we are starting from 0
0..range.end
} else {
// If the start is not 0 we need to read one more offset so we know the length
// of the first item
(range.start - 1)..range.end
}
})
.collect::<Vec<_>>();
let num_offsets = offsets_ranges
.iter()
.map(|range| range.end - range.start)
.sum();
let null_offset_adjustment = self.null_offset_adjustment;
trace!("Scheduling list offsets ranges: {:?}", offsets_ranges);
// Create a channel for the offsets
let mut temporary = context.temporary(None);
self.offsets_scheduler
.schedule_ranges(&offsets_ranges, &mut temporary, top_level_row)?;
let offset_decoders = temporary.into_decoders();
let num_offset_decoders = offset_decoders.len();
let mut scheduled_offsets =
offset_decoders
.into_iter()
.next()
.ok_or_else(|| Error::Internal {
message: format!("scheduling offsets yielded {} pages", num_offset_decoders),
location: location!(),
})?;
let items_schedulers = self.items_schedulers.clone();
let ranges = ranges.to_vec();
let items_type = self.items_type.clone();
let first_items_page_offset = self.first_items_page_offset;
let mut indirect_context = context.temporary(Some(top_level_row));
// First we schedule, as normal, the I/O for the offsets. Then we immediately spawn
// a task to decode those offsets and schedule the I/O for the items AND wait for
// the items. If we wait until the decode task has launched then we will be delaying
// the I/O for the items until we need them which is not good. Better to spend some
// eager CPU and start loading the items immediately.
let indirect_fut = tokio::task::spawn(async move {
// We know the offsets are a primitive array and thus will not need additional
// pages. We can use a dummy receiver to match the decoder API
scheduled_offsets.wait(num_rows).await?;
let decode_task = scheduled_offsets.drain(num_offsets)?;
let offsets = decode_task.task.decode()?;
let (item_ranges, offsets, validity) =
Self::decode_offsets(offsets.as_ref(), &ranges, null_offset_adjustment);
trace!(
"Indirectly scheduling items ranges {:?} from {} list items pages",
item_ranges,
items_schedulers.len()
);
// All requested lists are empty
if items_schedulers.is_empty() || item_ranges.is_empty() {
debug_assert!(item_ranges.iter().all(|r| r.start == r.end));
return Ok(IndirectlyLoaded {
root_decoder: None,
offsets,
validity,
});
}
// Create a new root scheduler, which has one column, which is our items data
let indirect_root_scheduler = SimpleStructScheduler::new_root(
vec![items_schedulers.as_ref().clone()],
Fields::from(vec![Field::new("item", items_type, true)]),
);
let patched_item_ranges = item_ranges
.clone()
.into_iter()
.map(|range| {
(range.start + first_items_page_offset as u64)
..(range.end + first_items_page_offset as u64)
})
.collect::<Vec<_>>();
// Immediately run the scheduling and process the decode messages (we could start
// a new thread here for decode to run in parallel but, at the moment, that seems
// like overkill)
indirect_root_scheduler.schedule_ranges_u64(
&patched_item_ranges,
&mut indirect_context,
top_level_row,
)?;
let mut root_decoder =
indirect_root_scheduler.new_root_decoder_ranges(&patched_item_ranges);
for message in indirect_context.into_messages() {
if let DecoderMessage::Decoder(decoder) = message {
debug_assert!(!decoder.path.is_empty());
root_decoder.accept_child(decoder)?;
}
}
Ok(IndirectlyLoaded {
offsets,
validity,
root_decoder: Some(root_decoder),
})
});
let data_type = match &self.offset_type {
DataType::Int32 => {
DataType::List(Arc::new(Field::new("item", self.items_type.clone(), true)))
}
DataType::Int64 => {
DataType::LargeList(Arc::new(Field::new("item", self.items_type.clone(), true)))
}
_ => panic!("Unexpected offset type {}", self.offset_type),
};
context.emit(Box::new(ListPageDecoder {
offsets: Vec::new(),
validity: BooleanBuffer::new(Buffer::from_vec(Vec::<u8>::default()), 0, 0),
item_decoder: None,
rows_drained: 0,
lists_available: 0,
num_rows,
unloaded: Some(indirect_fut),
items_type: self.items_type.clone(),
offset_type: self.offset_type.clone(),
data_type,
}));
Ok(())
}
fn num_rows(&self) -> u32 {
self.offsets_scheduler.num_rows()
}
fn schedule_take(
&self,
indices: &[u32],
context: &mut SchedulerContext,
top_level_row: u64,
) -> Result<()> {
trace!("Scheduling list offsets for {} indices", indices.len());
self.schedule_ranges(
&indices
.iter()
.map(|&idx| idx..(idx + 1))
.collect::<Vec<_>>(),
context,
top_level_row,
)
}
}
/// As soon as the first call to decode comes in we wait for all indirect I/O to
/// complete.
///
/// Once the indirect I/O is finished we pull items out of `unawaited`, wait them
/// (this wait should return immedately) and then push them into `item_decoders`.
///
/// We then drain from `item_decoders`, popping item pages off as we finish with
/// them.
///
/// TODO: Test the case where a single list page has multiple items pages
#[derive(Debug)]
struct ListPageDecoder {
unloaded: Option<JoinHandle<Result<IndirectlyLoaded>>>,
// offsets and validity will have already been decoded as part of the indirect I/O
offsets: Vec<u64>,
validity: BooleanBuffer,
item_decoder: Option<SimpleStructDecoder>,
lists_available: u32,
num_rows: u32,
rows_drained: u32,
items_type: DataType,
offset_type: DataType,
data_type: DataType,
}
struct ListDecodeTask {
offsets: Vec<u64>,
validity: BooleanBuffer,
// Will be None if there are no items (all empty / null lists)
items: Option<Box<dyn DecodeArrayTask>>,
items_type: DataType,
offset_type: DataType,
}
impl DecodeArrayTask for ListDecodeTask {
fn decode(self: Box<Self>) -> Result<ArrayRef> {
let items = self
.items
.map(|items| {
// When we run the indirect I/O we wrap things in a struct array with a single field
// named "item". We can unwrap that now.
let wrapped_items = items.decode()?;
Result::Ok(wrapped_items.as_struct().column(0).clone())
})
.unwrap_or_else(|| Ok(new_empty_array(&self.items_type)))?;
// TODO: we default to nullable true here, should probably use the nullability given to
// us from the input schema
let item_field = Arc::new(Field::new("item", self.items_type.clone(), true));
// The offsets are already decoded but they need to be shifted back to 0 and cast
// to the appropriate type
//
// Although, in some cases, the shift IS strictly required since the unshifted offsets
// may cross i32::MAX even though the shifted offsets do not
let offsets = UInt64Array::from(self.offsets);
let validity = NullBuffer::new(self.validity);
let validity = if validity.null_count() == 0 {
None
} else {
Some(validity)
};
let min_offset = UInt64Array::new_scalar(offsets.value(0));
let offsets = arrow_arith::numeric::sub(&offsets, &min_offset)?;
match &self.offset_type {
DataType::Int32 => {
let offsets = arrow_cast::cast(&offsets, &DataType::Int32)?;
let offsets_i32 = offsets.as_primitive::<Int32Type>();
let offsets = OffsetBuffer::new(offsets_i32.values().clone());
Ok(Arc::new(ListArray::try_new(
item_field, offsets, items, validity,
)?))
}
DataType::Int64 => {
let offsets = arrow_cast::cast(&offsets, &DataType::Int64)?;
let offsets_i64 = offsets.as_primitive::<Int64Type>();
let offsets = OffsetBuffer::new(offsets_i64.values().clone());
Ok(Arc::new(LargeListArray::try_new(
item_field, offsets, items, validity,
)?))
}
_ => panic!("ListDecodeTask with data type that is not i32 or i64"),
}
}
}
impl LogicalPageDecoder for ListPageDecoder {
fn wait(&mut self, num_rows: u32) -> BoxFuture<Result<()>> {
async move {
// wait for the indirect I/O to finish, run the scheduler for the indirect
// I/O and then wait for enough items to arrive
if self.unloaded.is_some() {
trace!("List scheduler needs to wait for indirect I/O to complete");
let indirectly_loaded = self.unloaded.take().unwrap().await;
if indirectly_loaded.is_err() {
match indirectly_loaded.unwrap_err().try_into_panic() {
Ok(err) => std::panic::resume_unwind(err),
Err(err) => panic!("{:?}", err),
};
}
let indirectly_loaded = indirectly_loaded.unwrap()?;
self.offsets = indirectly_loaded.offsets;
self.validity = indirectly_loaded.validity;
self.item_decoder = indirectly_loaded.root_decoder;
}
trace!(
"List decoder is waiting for {} rows and {} are already available and {} are unawaited",
num_rows,
self.lists_available,
self.num_rows - self.rows_drained
);
if self.lists_available >= num_rows {
self.lists_available -= num_rows;
return Ok(());
}
let num_rows = num_rows - self.lists_available;
self.lists_available = 0;
let offset_wait_start = self.rows_drained + self.lists_available;
let item_start = self.offsets[offset_wait_start as usize];
let mut items_needed =
self.offsets[offset_wait_start as usize + num_rows as usize] - item_start;
if items_needed > 0 {
// First discount any already available items
let items_already_available = self.item_decoder.as_mut().unwrap().avail_u64();
trace!(
"List's items decoder needs {} items and already has {} items available",
items_needed,
items_already_available,
);
items_needed = items_needed.saturating_sub(items_already_available);
if items_needed > 0 {
self.item_decoder.as_mut().unwrap().wait_u64(items_needed).await?;
}
}
// This is technically undercounting a little. It's possible that we loaded a big items
// page with many items and then only needed a few of them for the requested lists. However,
// to find the exact number of lists that are available we would need to walk through the item
// lengths and it's faster to just undercount here.
self.lists_available += num_rows;
Ok(())
}
.boxed()
}
fn unawaited(&self) -> u32 {
self.num_rows - self.lists_available - self.rows_drained
}
fn drain(&mut self, num_rows: u32) -> Result<NextDecodeTask> {
self.lists_available -= num_rows;
// We already have the offsets but need to drain the item pages
let mut actual_num_rows = num_rows;
let item_start = self.offsets[self.rows_drained as usize];
if self.offset_type != DataType::Int64 {
// We might not be able to drain `num_rows` because that request might contain more than 2^31 items
// so we need to figure out how many rows we can actually drain.
while actual_num_rows > 0 {
let num_items =
self.offsets[(self.rows_drained + actual_num_rows) as usize] - item_start;
if num_items <= i32::MAX as u64 {
break;
}
// TODO: This could be slow. Maybe faster to start from zero or do binary search. Investigate when
// actually adding support for smaller than requested batches
actual_num_rows -= 1;
}
}
if actual_num_rows < num_rows {
// TODO: We should be able to automatically
// shrink the read batch size if we detect the batches are going to be huge (maybe
// even achieve this with a read_batch_bytes parameter, though some estimation may
// still be required)
return Err(Error::NotSupported { source: format!("loading a batch of {} lists would require creating an array with over i32::MAX items and we don't yet support returning smaller than requested batches", num_rows).into(), location: location!() });
}
let offsets = self.offsets
[self.rows_drained as usize..(self.rows_drained + actual_num_rows + 1) as usize]
.to_vec();
let validity = self
.validity
.slice(self.rows_drained as usize, actual_num_rows as usize);
let start = offsets[0];
let end = offsets[offsets.len() - 1];
let num_items_to_drain = end - start;
let item_decode = if num_items_to_drain == 0 {
None
} else {
self.item_decoder
.as_mut()
.map(|item_decoder| Result::Ok(item_decoder.drain_u64(num_items_to_drain)?.task))
.transpose()?
};
self.rows_drained += num_rows;
Ok(NextDecodeTask {
has_more: self.avail() > 0 || self.unawaited() > 0,
num_rows,
task: Box::new(ListDecodeTask {
offsets,
validity,
items: item_decode,
items_type: self.items_type.clone(),
offset_type: self.offset_type.clone(),
}) as Box<dyn DecodeArrayTask>,
})
}
fn avail(&self) -> u32 {
self.lists_available
}
fn data_type(&self) -> &DataType {
&self.data_type
}
}
struct IndirectlyLoaded {
offsets: Vec<u64>,
validity: BooleanBuffer,
root_decoder: Option<SimpleStructDecoder>,
}
impl std::fmt::Debug for IndirectlyLoaded {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("IndirectlyLoaded")
.field("offsets", &self.offsets)
.field("validity", &self.validity)
.finish()
}
}
/// An encoder for list offsets that "stitches" offsets and encodes nulls into the offsets
///
/// If we need to encode several list arrays into a single page then we need to "stitch" the offsets
/// For example, imagine we have list arrays [[0, 1], [2]] and [[3, 4, 5]].
///
/// We will have offset arrays [0, 2, 3] and [0, 3]. We don't want to encode [0, 2, 3, 0, 3]. What
/// we want is [0, 2, 3, 6]
///
/// This encoder also handles validity by converting a null value into an oversized offset. For example,
/// if we have four lists with offsets [0, 20, 20, 20, 30] and the list at index 2 is null (note that
/// the list at index 1 is empty) then we turn this into offsets [0, 20, 20, 51, 30]. We replace a null
/// offset with previous_offset + max_offset + 1. This makes it possible to load a single item from the
/// list array.
///
/// These offsets are always stored on disk as a u64 array. First, this is because its simply much more
/// likely than one expects that this is needed, even if our lists are not massive. This is because we
/// only write an offsets page when we have enough data. This means we will probably accumulate a million
/// offsets or more before we bother to write a page. If our lists have a few thousand items a piece then
/// we end up passing the u32::MAX boundary.
///
/// The second reason is that list offsets are very easily compacted with delta + bit packing and so those
/// u64 offsets should easily be shrunk down before being put on disk.
///
/// This encoder can encode both lists and large lists. It can decode the resulting column into either type
/// as well. (TODO: Test and enable large lists)
///
/// You can even write as a large list and decode as a regular list (as long as no single list has more than
/// 2^31 items) or vice versa. You could even encode a mixed stream of list and large list (but unclear that
/// would ever be useful)
#[derive(Debug)]
struct ListOffsetsEncoder {
// An accumulation queue, we insert both offset arrays and validity arrays into this queue
accumulation_queue: AccumulationQueue,
// The inner encoder of offset values
inner_encoder: Arc<dyn ArrayEncoder>,
column_index: u32,
}
impl ListOffsetsEncoder {
fn new(cache_bytes: u64, keep_original_array: bool, column_index: u32) -> Self {
Self {
accumulation_queue: AccumulationQueue::new(
cache_bytes,
column_index,
keep_original_array,
),
inner_encoder: Arc::new(BasicEncoder::new(Box::new(
ValueEncoder::try_new(&DataType::Int64, CompressionScheme::None).unwrap(),
))),
column_index,
}
}
/// Given a list array, return the offsets as a standalone ArrayRef (either an Int32Array or Int64Array)
fn extract_offsets(list_arr: &dyn Array) -> ArrayRef {
match list_arr.data_type() {
DataType::List(_) => {
let offsets = list_arr.as_list::<i32>().offsets().clone();
Arc::new(Int32Array::new(offsets.into_inner(), None))
}
DataType::LargeList(_) => {
let offsets = list_arr.as_list::<i64>().offsets().clone();
Arc::new(Int64Array::new(offsets.into_inner(), None))
}
_ => panic!(),
}
}
/// Converts the validity of a list array into a boolean array. If there is no validity information
/// then this is an empty boolean array.
fn extract_validity(list_arr: &dyn Array) -> ArrayRef {
if let Some(validity) = list_arr.nulls() {
Arc::new(BooleanArray::new(validity.inner().clone(), None))
} else {
// We convert None validity into an empty array because the accumulation queue can't
// handle Option<ArrayRef>
new_empty_array(&DataType::Boolean)
}
}
fn make_encode_task(&self, arrays: Vec<ArrayRef>) -> EncodeTask {
let inner_encoder = self.inner_encoder.clone();
let column_idx = self.column_index;
// At this point we should have 2*N arrays where the even-indexed arrays are integer offsets
// and the odd-indexed arrays are boolean validity bitmaps
let offset_arrays = arrays.iter().step_by(2).cloned().collect::<Vec<_>>();
let validity_arrays = arrays.into_iter().skip(1).step_by(2).collect::<Vec<_>>();
tokio::task::spawn(async move {
let num_rows =
offset_arrays.iter().map(|arr| arr.len()).sum::<usize>() - offset_arrays.len();
let num_rows = num_rows as u32;
let mut buffer_index = 0;
let array = Self::do_encode(
offset_arrays,
validity_arrays,
&mut buffer_index,
num_rows,
inner_encoder,
)?;
Ok(EncodedPage {
array,
num_rows,
column_idx,
})
})
.map(|res_res| res_res.unwrap())
.boxed()
}
fn maybe_encode_offsets_and_validity(&mut self, list_arr: &dyn Array) -> Option<EncodeTask> {
let offsets = Self::extract_offsets(list_arr);
let validity = Self::extract_validity(list_arr);
// Either inserting the offsets OR inserting the validity could cause the
// accumulation queue to fill up
if let Some(mut arrays) = self.accumulation_queue.insert(offsets) {
arrays.push(validity);
Some(self.make_encode_task(arrays))
} else if let Some(arrays) = self.accumulation_queue.insert(validity) {
Some(self.make_encode_task(arrays))
} else {
None
}
}
fn flush(&mut self) -> Option<EncodeTask> {
if let Some(arrays) = self.accumulation_queue.flush() {
Some(self.make_encode_task(arrays))
} else {
None
}
}
// Get's the total number of items covered by an array of offsets (keeping in
// mind that the first offset may not be zero)
fn get_offset_span(array: &dyn Array) -> u64 {
match array.data_type() {
DataType::Int32 => {
let arr_i32 = array.as_primitive::<Int32Type>();
(arr_i32.value(arr_i32.len() - 1) - arr_i32.value(0)) as u64
}
DataType::Int64 => {
let arr_i64 = array.as_primitive::<Int64Type>();
(arr_i64.value(arr_i64.len() - 1) - arr_i64.value(0)) as u64
}
_ => panic!(),
}
}
// This is where we do the work to actually shift the offsets and encode nulls
// Note that the output is u64 and the input could be i32 OR i64.
fn extend_offsets_vec_u64(
dest: &mut Vec<u64>,
offsets: &dyn Array,
validity: Option<&BooleanArray>,
// The offset of this list into the destination
base: u64,
null_offset_adjustment: u64,
) {
match offsets.data_type() {
DataType::Int32 => {
let offsets_i32 = offsets.as_primitive::<Int32Type>();
let start = offsets_i32.value(0) as u64;
// If we want to take a list from start..X and change it into
// a list from end..X then we need to add (base - start) to all elements
// Note that `modifier` may be negative but (item + modifier) will always be >= 0
let modifier = base as i64 - start as i64;
if let Some(validity) = validity {
dest.extend(
offsets_i32
.values()
.iter()
.skip(1)
.zip(validity.values().iter())
.map(|(&off, valid)| {
(off as i64 + modifier) as u64
+ (!valid as u64 * null_offset_adjustment)
}),
);
} else {
dest.extend(
offsets_i32
.values()
.iter()
.skip(1)
// Subtract by `start` so offsets start at 0
.map(|&v| (v as i64 + modifier) as u64),
);
}
}
DataType::Int64 => {
let offsets_i64 = offsets.as_primitive::<Int64Type>();
let start = offsets_i64.value(0) as u64;
// If we want to take a list from start..X and change it into
// a list from end..X then we need to add (base - start) to all elements
// Note that `modifier` may be negative but (item + modifier) will always be >= 0
let modifier = base as i64 - start as i64;
if let Some(validity) = validity {
dest.extend(
offsets_i64
.values()
.iter()
.skip(1)
.zip(validity.values().iter())
.map(|(&off, valid)| {
(off + modifier) as u64 + (!valid as u64 * null_offset_adjustment)
}),
)
} else {
dest.extend(
offsets_i64
.values()
.iter()
.skip(1)
.map(|&v| (v + modifier) as u64),
);
}
}
_ => panic!("Invalid list offsets data type {:?}", offsets.data_type()),
}
}
fn do_encode_u64(
offset_arrays: Vec<ArrayRef>,
validity: Vec<Option<&BooleanArray>>,
num_offsets: u32,
null_offset_adjustment: u64,
buffer_index: &mut u32,
inner_encoder: Arc<dyn ArrayEncoder>,
) -> Result<EncodedArray> {
let mut offsets = Vec::with_capacity(num_offsets as usize);
for (offsets_arr, validity_arr) in offset_arrays.iter().zip(validity) {
let last_prev_offset = offsets.last().copied().unwrap_or(0) % null_offset_adjustment;
Self::extend_offsets_vec_u64(
&mut offsets,
&offsets_arr,
validity_arr,
last_prev_offset,
null_offset_adjustment,
);
}
inner_encoder.encode(&[Arc::new(UInt64Array::from(offsets))], buffer_index)
}
fn do_encode(
offset_arrays: Vec<ArrayRef>,
validity_arrays: Vec<ArrayRef>,
buffer_index: &mut u32,
num_offsets: u32,
inner_encoder: Arc<dyn ArrayEncoder>,
) -> Result<EncodedArray> {
let validity_arrays = validity_arrays
.iter()
.map(|v| {
if v.is_empty() {
None
} else {
Some(v.as_boolean())
}
})
.collect::<Vec<_>>();
debug_assert_eq!(offset_arrays.len(), validity_arrays.len());
let total_span = offset_arrays
.iter()
.map(|arr| Self::get_offset_span(arr.as_ref()))
.sum::<u64>();
// See encodings.proto for reasoning behind this value
let null_offset_adjustment = total_span + 1;
let encoded_offsets = Self::do_encode_u64(
offset_arrays,
validity_arrays,
num_offsets,
null_offset_adjustment,
buffer_index,
inner_encoder,
)?;
Ok(EncodedArray {
buffers: encoded_offsets.buffers,
encoding: pb::ArrayEncoding {
array_encoding: Some(pb::array_encoding::ArrayEncoding::List(Box::new(
pb::List {
offsets: Some(Box::new(encoded_offsets.encoding)),
null_offset_adjustment,
num_items: total_span,
},
))),
},
})
}
}
pub struct ListFieldEncoder {
offsets_encoder: ListOffsetsEncoder,
items_encoder: Box<dyn FieldEncoder>,
}
impl ListFieldEncoder {
pub fn new(
items_encoder: Box<dyn FieldEncoder>,
cache_bytes_per_columns: u64,
keep_original_array: bool,
column_index: u32,
) -> Self {
Self {
offsets_encoder: ListOffsetsEncoder::new(
cache_bytes_per_columns,
keep_original_array,
column_index,
),
items_encoder,
}
}
fn combine_tasks(
offsets_tasks: Vec<EncodeTask>,
item_tasks: Vec<EncodeTask>,
) -> Result<Vec<EncodeTask>> {
let mut all_tasks = offsets_tasks;
let item_tasks = item_tasks;
all_tasks.extend(item_tasks);
Ok(all_tasks)
}
}
impl FieldEncoder for ListFieldEncoder {
fn maybe_encode(&mut self, array: ArrayRef) -> Result<Vec<EncodeTask>> {
// The list may have an offset / shorter length which means the underlying
// values array could be longer than what we need to encode and so we need
// to slice down to the region of interest.
let items = match array.data_type() {
DataType::List(_) => {
let list_arr = array.as_list::<i32>();
let items_start = list_arr.value_offsets()[list_arr.offset()] as usize;
let items_end =
list_arr.value_offsets()[list_arr.offset() + list_arr.len()] as usize;
list_arr
.values()
.slice(items_start, items_end - items_start)
}
DataType::LargeList(_) => {
let list_arr = array.as_list::<i64>();
let items_start = list_arr.value_offsets()[list_arr.offset()] as usize;
let items_end =
list_arr.value_offsets()[list_arr.offset() + list_arr.len()] as usize;
list_arr
.values()
.slice(items_start, items_end - items_start)
}
_ => panic!(),
};
let offsets_tasks = self
.offsets_encoder
.maybe_encode_offsets_and_validity(array.as_ref())
.map(|task| vec![task])
.unwrap_or_default();
let mut item_tasks = self.items_encoder.maybe_encode(items)?;
if !offsets_tasks.is_empty() && item_tasks.is_empty() {
// An items page cannot currently be shared by two different offsets pages. This is
// a limitation in the current scheduler and could be addressed in the future. As a result
// we always need to encode the items page if we encode the offsets page.
//
// In practice this isn't usually too bad unless we are targetting very small pages.
item_tasks = self.items_encoder.flush()?;
}
Self::combine_tasks(offsets_tasks, item_tasks)
}
fn flush(&mut self) -> Result<Vec<EncodeTask>> {
let offsets_tasks = self
.offsets_encoder
.flush()
.map(|task| vec![task])
.unwrap_or_default();
let item_tasks = self.items_encoder.flush()?;
Self::combine_tasks(offsets_tasks, item_tasks)
}
fn num_columns(&self) -> u32 {
self.items_encoder.num_columns() + 1
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use arrow_array::{
builder::{Int32Builder, ListBuilder},
ArrayRef, BooleanArray, ListArray,
};
use arrow_buffer::{OffsetBuffer, ScalarBuffer};
use arrow_schema::{DataType, Field, Fields};
use crate::testing::{
check_round_trip_encoding_of_data, check_round_trip_encoding_random, TestCases,
};
fn make_list_type(inner_type: DataType) -> DataType {
DataType::List(Arc::new(Field::new("item", inner_type, true)))
}
#[test_log::test(tokio::test)]
async fn test_list() {
let field = Field::new("", make_list_type(DataType::Int32), true);
check_round_trip_encoding_random(field).await;
}
#[test_log::test(tokio::test)]
async fn test_nested_list() {
let field = Field::new("", make_list_type(DataType::Utf8), true);
check_round_trip_encoding_random(field).await;
}
#[test_log::test(tokio::test)]
async fn test_list_struct_list() {
let struct_type = DataType::Struct(Fields::from(vec![Field::new(
"inner_str",
DataType::Utf8,
false,
)]));
let field = Field::new("", make_list_type(struct_type), true);
check_round_trip_encoding_random(field).await;
}
#[test_log::test(tokio::test)]
async fn test_simple_list() {
let items_builder = Int32Builder::new();
let mut list_builder = ListBuilder::new(items_builder);
list_builder.append_value([Some(1), Some(2), Some(3)]);
list_builder.append_value([Some(4), Some(5)]);
list_builder.append_null();
list_builder.append_value([Some(6), Some(7), Some(8)]);
let list_array = list_builder.finish();
let test_cases = TestCases::default()
.with_range(0..2)
.with_range(0..3)
.with_range(1..3)
.with_indices(vec![1, 3]);
check_round_trip_encoding_of_data(vec![Arc::new(list_array)], &test_cases).await;
}
#[test_log::test(tokio::test)]
async fn test_empty_lists() {
// Scenario 1: Some lists are empty
let values = [vec![Some(1), Some(2), Some(3)], vec![], vec![None]];
// Test empty list at beginning, middle, and end
for order in [[0, 1, 2], [1, 0, 2], [2, 0, 1]] {
let items_builder = Int32Builder::new();
let mut list_builder = ListBuilder::new(items_builder);
for idx in order {
list_builder.append_value(values[idx].clone());
}
let list_array = Arc::new(list_builder.finish());
let test_cases = TestCases::default()
.with_indices(vec![1])
.with_indices(vec![0])
.with_indices(vec![2]);
check_round_trip_encoding_of_data(vec![list_array.clone()], &test_cases).await;
let test_cases = test_cases.with_batch_size(1);
check_round_trip_encoding_of_data(vec![list_array], &test_cases).await;
}
// Scenario 2: All lists are empty
// When encoding a list of empty lists there are no items to encode
// which is strange and we want to ensure we handle it
let items_builder = Int32Builder::new();
let mut list_builder = ListBuilder::new(items_builder);
list_builder.append(true);
list_builder.append_null();
list_builder.append(true);
let list_array = Arc::new(list_builder.finish());
let test_cases = TestCases::default().with_range(0..2).with_indices(vec![1]);
check_round_trip_encoding_of_data(vec![list_array.clone()], &test_cases).await;
let test_cases = test_cases.with_batch_size(1);
check_round_trip_encoding_of_data(vec![list_array], &test_cases).await;
}
#[test_log::test(tokio::test)]
#[ignore] // This test is quite slow in debug mode
async fn test_jumbo_list() {
// This is an overflow test. We have a list of lists where each list
// has 1Mi items. We encode 5000 of these lists and so we have over 4Gi in the
// offsets range
let items = BooleanArray::new_null(1024 * 1024);
let offsets = OffsetBuffer::new(ScalarBuffer::from(vec![0, 1024 * 1024]));
let list_arr = Arc::new(ListArray::new(
Arc::new(Field::new("item", DataType::Boolean, true)),
offsets,
Arc::new(items),
None,
)) as ArrayRef;
let arrs = vec![list_arr; 5000];
// We can't validate because our validation relies on concatenating all input arrays
let test_cases = TestCases::default().without_validation();
check_round_trip_encoding_of_data(arrs, &test_cases).await;
}
}