1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors
use std::{collections::VecDeque, ops::Range, sync::Arc};
use arrow_array::{cast::AsArray, ArrayRef, StructArray};
use arrow_schema::Fields;
use futures::{future::BoxFuture, FutureExt};
use log::trace;
use tokio::sync::mpsc;
use crate::{
decoder::{DecodeArrayTask, LogicalPageDecoder, LogicalPageScheduler, NextDecodeTask},
encoder::{EncodedArray, EncodedPage, FieldEncoder},
format::pb,
EncodingsIo,
};
use lance_core::Result;
/// A scheduler for structs
///
/// The implementation is actually a bit more tricky than one might initially think. We can't just
/// go through and schedule each column one after the other. This would mean our decode can't start
/// until nearly all the data has arrived (since we need data from each column)
///
/// Instead, we schedule in row-major fashion, described in detail below.
///
/// Note: this scheduler is the starting point for all decoding. This is because we treat the top-level
/// record batch as a non-nullable struct.
#[derive(Debug)]
pub struct SimpleStructScheduler {
children: Vec<Vec<Box<dyn LogicalPageScheduler>>>,
child_fields: Fields,
num_rows: u32,
}
impl SimpleStructScheduler {
pub fn new(children: Vec<Vec<Box<dyn LogicalPageScheduler>>>, child_fields: Fields) -> Self {
debug_assert!(!children.is_empty());
let num_rows = children[0].iter().map(|page| page.num_rows()).sum();
// Ensure that all the children have the same number of rows
Self {
children,
child_fields,
num_rows,
}
}
}
// As we schedule a range we keep one of these per column so that we know
// how far into the column we have already scheduled.
#[derive(Debug, Clone, Copy)]
struct RangeFieldWalkStatus {
rows_to_skip: u32,
rows_to_take: u32,
page_offset: u32,
rows_queued: u32,
}
impl RangeFieldWalkStatus {
fn new_from_range(range: Range<u32>) -> Self {
Self {
rows_to_skip: range.start,
rows_to_take: range.end - range.start,
page_offset: 0,
rows_queued: 0,
}
}
}
#[derive(Debug, Clone)]
struct TakeFieldWalkStatus<'a> {
indices: &'a [u32],
indices_index: usize,
page_offset: u32,
rows_queued: u32,
rows_passed: u32,
}
impl<'a> TakeFieldWalkStatus<'a> {
fn new_from_indices(indices: &'a [u32]) -> Self {
Self {
indices,
indices_index: 0,
page_offset: 0,
rows_queued: 0,
rows_passed: 0,
}
}
// If the next page has `rows_in_page` rows then return the indices that would be included
// in that page (the returned indices are relative to the start of the page)
fn advance_page(&mut self, rows_in_page: u32) -> Vec<u32> {
let mut indices = Vec::new();
while self.indices_index < self.indices.len()
&& (self.indices[self.indices_index] - self.rows_passed) < rows_in_page
{
indices.push(self.indices[self.indices_index] - self.rows_passed);
self.indices_index += 1;
}
self.rows_passed += rows_in_page;
self.page_offset += 1;
indices
}
}
impl LogicalPageScheduler for SimpleStructScheduler {
fn schedule_ranges(
&self,
ranges: &[Range<u32>],
scheduler: &Arc<dyn EncodingsIo>,
sink: &mpsc::UnboundedSender<Box<dyn LogicalPageDecoder>>,
) -> Result<()> {
for range in ranges.iter().cloned() {
let mut rows_to_read = range.end - range.start;
trace!(
"Scheduling struct decode of range {:?} ({} rows)",
range,
rows_to_read
);
// Before we do anything, send a struct decoder to the decode thread so it can start decoding the pages
// we are about to send.
//
// This will need to get a tiny bit more complicated once structs have their own nullability and that nullability
// information starts to span multiple pages.
sink.send(Box::new(SimpleStructDecoder::new(
self.child_fields.clone(),
rows_to_read,
)))
.unwrap();
let mut field_status =
vec![RangeFieldWalkStatus::new_from_range(range); self.children.len()];
// NOTE: The order in which we are scheduling tasks here is very important. We want to schedule the I/O so that
// we can deliver completed rows as quickly as possible to the decoder. This means we want to schedule in row-major
// order from start to the end. E.g. if we schedule one column at a time then the decoder is going to have to wait
// until almost all the I/O is finished before it can return a single batch.
//
// Luckily, we can do this using a simple greedy algorithm. We iterate through each column independently. For each
// pass through the metadata we look for any column that doesn't have any "queued rows". Once we find it we schedule
// the next page for that column and increase its queued rows. After each pass we should have some data queued for
// each column. We take the column with the least amount of queued data and decrement that amount from the queued
// rows total of all columns.
// As we schedule, we create decoders. These decoders are immediately sent to the decode thread
// to allow decoding to start.
// TODO: Instead of advancing one page at a time on each column we could make this algorithm aware of the
// batch size. Then we would advance a column until it has enough rows to fill the next batch. This would
// mainly be useful in cases like "take from fixed-size-list<struct<...>>" since the take from fsl becomes a
// schedule_ranges against the struct with many tiny ranges and then we end up converting each range into a single
// batch of I/O with the current algorithm.
//
// The downside of the current algorithm is that many tiny I/O batches means less opportunity for in-batch coalescing.
// Then again, if our outer batch coalescing is super good then maybe we don't bother
while rows_to_read > 0 {
let mut min_rows_added = u32::MAX;
for (col_idx, field_scheduler) in self.children.iter().enumerate() {
let status = &mut field_status[col_idx];
if status.rows_queued == 0 {
trace!("Need additional rows for column {}", col_idx);
let mut next_page = &field_scheduler[status.page_offset as usize];
while status.rows_to_skip >= next_page.num_rows() {
status.rows_to_skip -= next_page.num_rows();
status.page_offset += 1;
trace!("Skipping entire page of {} rows", next_page.num_rows());
next_page = &field_scheduler[status.page_offset as usize];
}
let page_range_start = status.rows_to_skip;
let page_rows_remaining = next_page.num_rows() - page_range_start;
let rows_to_take = status.rows_to_take.min(page_rows_remaining);
let page_range = page_range_start..(page_range_start + rows_to_take);
trace!(
"Taking {} rows from column {} starting at page offset {} from page {:?}",
rows_to_take,
col_idx,
page_range_start,
next_page
);
next_page.schedule_ranges(&[page_range], scheduler, sink)?;
status.rows_queued += rows_to_take;
status.rows_to_take -= rows_to_take;
status.page_offset += 1;
status.rows_to_skip = 0;
min_rows_added = min_rows_added.min(rows_to_take);
}
}
if min_rows_added == 0 {
panic!("Error in scheduling logic, panic to avoid infinite loop");
}
rows_to_read -= min_rows_added;
for field_status in &mut field_status {
field_status.rows_queued -= min_rows_added;
}
}
}
Ok(())
}
fn num_rows(&self) -> u32 {
self.num_rows
}
fn schedule_take(
&self,
indices: &[u32],
scheduler: &Arc<dyn EncodingsIo>,
sink: &mpsc::UnboundedSender<Box<dyn LogicalPageDecoder>>,
) -> Result<()> {
trace!("Scheduling struct decode of {} indices", indices.len());
// Before we do anything, send a struct decoder to the decode thread so it can start decoding the pages
// we are about to send.
//
// This will need to get a tiny bit more complicated once structs have their own nullability and that nullability
// information starts to span multiple pages.
sink.send(Box::new(SimpleStructDecoder::new(
self.child_fields.clone(),
indices.len() as u32,
)))
.unwrap();
// Create a cursor into indices for each column
let mut field_status =
vec![TakeFieldWalkStatus::new_from_indices(indices); self.children.len()];
let mut rows_to_read = indices.len() as u32;
// NOTE: See schedule_range for a description of the scheduling algorithm
while rows_to_read > 0 {
let mut min_rows_added = u32::MAX;
for (col_idx, field_scheduler) in self.children.iter().enumerate() {
let status = &mut field_status[col_idx];
if status.rows_queued == 0 {
trace!("Need additional rows for column {}", col_idx);
let mut indices_in_page = Vec::new();
let mut next_page = None;
// Loop through the pages in this column until we find one with overlapping indices
while indices_in_page.is_empty() {
let next_candidate_page = &field_scheduler[status.page_offset as usize];
indices_in_page = status.advance_page(next_candidate_page.num_rows());
trace!(
"{}",
if indices_in_page.is_empty() {
format!(
"Skipping entire page of {} rows",
next_candidate_page.num_rows()
)
} else {
format!(
"Found page with {} overlapping indices",
indices_in_page.len()
)
}
);
next_page = Some(next_candidate_page);
}
// We should be guaranteed to get at least one page
let next_page = next_page.unwrap();
next_page.schedule_take(&indices_in_page, scheduler, sink)?;
let rows_scheduled = indices_in_page.len() as u32;
status.rows_queued += rows_scheduled;
min_rows_added = min_rows_added.min(rows_scheduled);
}
}
if min_rows_added == 0 {
panic!("Error in scheduling logic, panic to avoid infinite loop");
}
rows_to_read -= min_rows_added;
for field_status in &mut field_status {
field_status.rows_queued -= min_rows_added;
}
}
Ok(())
}
}
struct ChildState {
// As we decode a column we pull pages out of the channel source and into
// a queue for that column. Since we await as soon as we pull the page from
// the source there is no need for a separate unawaited queue.
//
// Technically though, these pages are only "partially awaited"
//
// Note: This queue may have more than one page in it if the batch size is very large
// or pages are very small
// TODO: Test this case
//
// Then we drain this queue pages as we decode.
awaited: VecDeque<Box<dyn LogicalPageDecoder>>,
// Rows that should still be coming over the channel source but haven't yet been
// put into the awaited queue
rows_unawaited: u32,
// Rows that have been pulled out of the channel source, awaited, and are ready to
// be drained
rows_available: u32,
}
struct CompositeDecodeTask {
// One per child
tasks: Vec<Box<dyn DecodeArrayTask>>,
num_rows: u32,
has_more: bool,
}
impl CompositeDecodeTask {
fn decode(self) -> Result<ArrayRef> {
let arrays = self
.tasks
.into_iter()
.map(|task| task.decode())
.collect::<Result<Vec<_>>>()?;
let array_refs = arrays.iter().map(|arr| arr.as_ref()).collect::<Vec<_>>();
// TODO: If this is a primitive column we should be able to avoid this
// allocation + copy with "page bridging" which could save us a few CPU
// cycles.
//
// This optimization is probably most important for super fast storage like NVME
// where the page size can be smaller.
Ok(arrow_select::concat::concat(&array_refs)?)
}
}
impl ChildState {
fn new(num_rows: u32) -> Self {
Self {
awaited: VecDeque::new(),
rows_unawaited: num_rows,
rows_available: 0,
}
}
// Wait for the next set of rows to arrive. Return true if finished. Return
// false if more rows are still needed (we can only wait one page at a time
// because we need to move in row-major fashion)
async fn wait_next(
&mut self,
num_rows: u32,
source: &mut mpsc::UnboundedReceiver<Box<dyn LogicalPageDecoder>>,
) -> Result<bool> {
trace!(
"Struct waiting for {} rows and {} are available already",
num_rows,
self.rows_available
);
let remaining = num_rows.saturating_sub(self.rows_available);
if remaining > 0 {
if let Some(back) = self.awaited.back_mut() {
if back.unawaited() > 0 {
let rows_to_wait = remaining.min(back.unawaited());
trace!(
"Struct await an additional {} rows from the current page",
rows_to_wait
);
// Even though we wait for X rows we might actually end up
// loading more than that
let previously_avail = back.avail();
back.wait(rows_to_wait, source).await?;
let newly_avail = back.avail() - previously_avail;
trace!("The await loaded {} rows", newly_avail);
self.rows_available += newly_avail;
self.rows_unawaited -= newly_avail;
return Ok(remaining == rows_to_wait);
}
}
// Because we schedule in row-major fashion we know the next page
// will belong to this column.
let mut decoder = source.recv().await.unwrap();
let could_await = decoder.unawaited();
let rows_to_wait = remaining.min(could_await);
trace!(
"Struct received new page and awaiting {} rows out of {}",
rows_to_wait,
could_await
);
// We might only await part of a page. This is important for things
// like the struct<struct<...>> case where we have one outer page, one
// middle page, and then a bunch of inner pages. If we await the entire
// middle page then we will have to wait for all the inner pages to arrive
// before we can start decoding.
//
// TODO: test this case
let previously_avail = decoder.avail();
decoder.wait(rows_to_wait, source).await?;
// It's possible that we loaded more rows than asked for so need to calculate
// newly_avail this way (we do this above too)
let newly_avail = decoder.avail() - previously_avail;
self.awaited.push_back(decoder);
self.rows_available += newly_avail;
self.rows_unawaited -= newly_avail;
trace!("The new await loaded {} rows", newly_avail);
Ok(remaining == rows_to_wait)
} else {
Ok(true)
}
}
fn drain(&mut self, num_rows: u32) -> Result<CompositeDecodeTask> {
trace!("Struct draining {} rows", num_rows);
debug_assert!(self.rows_available >= num_rows);
debug_assert!(num_rows > 0);
self.rows_available -= num_rows;
let mut remaining = num_rows;
let mut composite = CompositeDecodeTask {
tasks: Vec::new(),
num_rows: 0,
has_more: true,
};
while remaining > 0 {
let next = self.awaited.front_mut().unwrap();
let rows_to_take = remaining.min(next.avail());
let next_task = next.drain(rows_to_take)?;
if next.avail() == 0 && next.unawaited() == 0 {
trace!("Completely drained page");
self.awaited.pop_front();
}
remaining -= rows_to_take;
composite.tasks.push(next_task.task);
composite.num_rows += next_task.num_rows;
}
composite.has_more = self.rows_available != 0 || self.rows_unawaited != 0;
Ok(composite)
}
}
struct SimpleStructDecoder {
children: Vec<ChildState>,
child_fields: Fields,
}
impl SimpleStructDecoder {
fn new(child_fields: Fields, num_rows: u32) -> Self {
Self {
children: child_fields
.iter()
.map(|_| ChildState::new(num_rows))
.collect(),
child_fields,
}
}
}
impl LogicalPageDecoder for SimpleStructDecoder {
fn wait<'a>(
&'a mut self,
num_rows: u32,
source: &'a mut mpsc::UnboundedReceiver<Box<dyn LogicalPageDecoder>>,
) -> BoxFuture<'a, Result<()>> {
async move {
// This is basically the inverse of the row-major scheduling algorithm
let mut remaining = Vec::from_iter(self.children.iter_mut());
while !remaining.is_empty() {
let mut next_remaining = Vec::new();
for child in remaining {
if !child.wait_next(num_rows, source).await? {
next_remaining.push(child);
}
}
remaining = next_remaining;
}
Ok(())
}
.boxed()
}
fn drain(&mut self, num_rows: u32) -> Result<NextDecodeTask> {
let child_tasks = self
.children
.iter_mut()
.map(|child| child.drain(num_rows))
.collect::<Result<Vec<_>>>()?;
let num_rows = child_tasks[0].num_rows;
let has_more = child_tasks[0].has_more;
debug_assert!(child_tasks.iter().all(|task| task.num_rows == num_rows));
debug_assert!(child_tasks.iter().all(|task| task.has_more == has_more));
Ok(NextDecodeTask {
task: Box::new(SimpleStructDecodeTask {
children: child_tasks,
child_fields: self.child_fields.clone(),
}),
num_rows,
has_more,
})
}
// Rows are available only if they are available in every child column
fn avail(&self) -> u32 {
self.children
.iter()
.map(|c| c.rows_available)
.min()
.unwrap()
}
// Rows are unawaited if they are unawaited in any child column
fn unawaited(&self) -> u32 {
self.children
.iter()
.map(|c| c.rows_unawaited)
.max()
.unwrap()
}
}
struct SimpleStructDecodeTask {
children: Vec<CompositeDecodeTask>,
child_fields: Fields,
}
impl DecodeArrayTask for SimpleStructDecodeTask {
fn decode(self: Box<Self>) -> Result<ArrayRef> {
let child_arrays = self
.children
.into_iter()
.map(|child| child.decode())
.collect::<Result<Vec<_>>>()?;
Ok(Arc::new(StructArray::try_new(
self.child_fields,
child_arrays,
None,
)?))
}
}
pub struct StructFieldEncoder {
children: Vec<Box<dyn FieldEncoder>>,
column_index: u32,
num_rows_seen: u32,
}
impl StructFieldEncoder {
#[allow(dead_code)]
pub fn new(children: Vec<Box<dyn FieldEncoder>>, column_index: u32) -> Self {
Self {
children,
column_index,
num_rows_seen: 0,
}
}
}
impl FieldEncoder for StructFieldEncoder {
fn maybe_encode(
&mut self,
array: ArrayRef,
) -> Result<Vec<BoxFuture<'static, Result<EncodedPage>>>> {
self.num_rows_seen += array.len() as u32;
let struct_array = array.as_struct();
let child_tasks = self
.children
.iter_mut()
.zip(struct_array.columns().iter())
.map(|(encoder, arr)| encoder.maybe_encode(arr.clone()))
.collect::<Result<Vec<_>>>()?;
Ok(child_tasks.into_iter().flatten().collect::<Vec<_>>())
}
fn flush(&mut self) -> Result<Vec<BoxFuture<'static, Result<EncodedPage>>>> {
let child_tasks = self
.children
.iter_mut()
.map(|encoder| encoder.flush())
.collect::<Result<Vec<_>>>()?;
let mut child_tasks = child_tasks.into_iter().flatten().collect::<Vec<_>>();
let num_rows_seen = self.num_rows_seen;
let column_index = self.column_index;
// In this "simple struct / no nulls" case we emit a single header page at
// the very end which covers the entire struct.
child_tasks.push(
std::future::ready(Ok(EncodedPage {
array: EncodedArray {
buffers: vec![],
encoding: pb::ArrayEncoding {
array_encoding: Some(pb::array_encoding::ArrayEncoding::Struct(
pb::SimpleStruct {},
)),
},
},
num_rows: num_rows_seen,
column_idx: column_index,
}))
.boxed(),
);
Ok(child_tasks)
}
fn num_columns(&self) -> u32 {
self.children.len() as u32 + 1
}
}
#[cfg(test)]
mod tests {
use arrow_schema::{DataType, Field, Fields};
use crate::testing::check_round_trip_encoding;
#[test_log::test(tokio::test)]
async fn test_simple_struct() {
let data_type = DataType::Struct(Fields::from(vec![
Field::new("a", DataType::Int32, false),
Field::new("b", DataType::Int32, false),
]));
let field = Field::new("", data_type, false);
check_round_trip_encoding(field).await;
}
}